100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Interview

Trigonometry Solving Problems in 2D and 3D triangles

Beoordeling
-
Verkocht
-
Pagina's
8
Geüpload op
25-11-2021
Geschreven in
2021/2022

Trigonometry Solving Problems in 2D and 3D triangles

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak
Schooljaar
200

Documentinformatie

Geüpload op
25 november 2021
Aantal pagina's
8
Geschreven in
2021/2022
Type
Interview
Bedrijf
Onbekend
Persoon
Onbekend

Onderwerpen

Voorbeeld van de inhoud

SOLVING PROBLEMS IN 2 AND 3 DIMENSIONS

Recall from Grade 11 – Sine Rule Cos Rule and Area Rule:
A
In any ΔABC

𝑠𝑖𝑛 𝐴 𝑠𝑖𝑛 𝐵 𝑠𝑖𝑛 𝐶
Sine rule: = = c b
𝑎 𝑏 𝑐
𝑎 𝑏 𝑐
= 𝑠𝑖𝑛 𝐵 = 𝑠𝑖𝑛 𝐶
𝑠𝑖𝑛 𝐴


The sine rule is used to find unknown sides or angles B C
a
when at least one known side-angle pair is given in a
triangle which is not right-angled.

Cos rule: 𝑎2 = 𝑏 2 + 𝑐 2 − 2𝑏𝑐 𝑐𝑜𝑠 𝐴
𝑏 2 = 𝑎2 + 𝑐 2 − 2𝑎𝑐 𝑐𝑜𝑠 𝐵
𝑐 2 = 𝑎2 + 𝑏 2 − 2𝑎𝑏 𝑐𝑜𝑠 𝐶

The cos rule is used to find unknown sides and angles when 3 sides or 2 sides and an included angle
are given in a triangle which is not right-angled.

1
Area rule: area Δ𝐴𝐵𝐶 = 2 𝑎𝑏 𝑠𝑖𝑛 𝐶 Remember for the area rule
1
area Δ𝐴𝐵𝐶 = 2 𝑏𝑐 𝑠𝑖𝑛 𝐴 the angle concerned is
1 included (between) the
area Δ𝐴𝐵𝐶 = 2 𝑎𝑐 𝑠𝑖𝑛 𝐵 two adjacent sides.


The area rule is used to find the area of a triangle, when no perpendicular height is given or when
two sides and an included angle are given, or to find unknown sides or angles when the area is
given.

SOLVING PROBLEMS IN 2 DIMENSIONS:

1. The problem usually involves two triangles with a common side.
2. Often one of the triangles is right-angled.
3. If a sketch is not given, draw a clear sketch showing all the given information.
4. Use geometry to obtain additional information.
5. The height or length to be found often lies in the triangle with insufficient information. Start
in the triangle which has enough information to find the length of the shared side.
6. Then use the sin, cos or area formulae, trig ratios and identities to solve the problem.
7. TO AVOID ROUNDING ERRORS DO NOT TO ROUND OFF UNTIL THE LAST LINE.




1

, e.g.1. Determine PR P

Solution: 1 2


̂
P1 = 28° (ext. ∠ of ∆PQS)
PS 10
= sin 28° 40° 68°
sin 40° R
Q
10 sin 40° 10 S
PS = sin 28°

PS = 13,69 … units store without rounding in your calculator or leave out this line
PR
= sin 68° Alternative method:
PS
Do not work out PS above,
PR = (13,69 … )( sin 68°) using stored value of PS or substitute in the PS formula, so
𝑃𝑅 = 𝑃𝑆. 𝑠𝑖𝑛 68° becomes
PR = 12,69 units 𝑃𝑅 =
10 𝑠𝑖𝑛 40°
. 𝑠𝑖𝑛 68°
𝑠𝑖𝑛 28°
𝑃𝑅 = 12,69 𝑢𝑛𝑖𝑡𝑠
(this means that you do not store
values and round only once at the
end!)


e.g.2. Prove that in quadrilateral PQRS
P
𝑑.sin(𝑥+𝑦).cos θ
PS = sin 𝑥


Solution:

In ∆QRS
Q x S
̂ = 180° − (𝑥 + 𝑦) y
R (∠ sum in ∆)
QS 𝑑 d
= sin 𝑥 sine rule
sin(180°−(𝑥+𝑦))

QS 𝑑 R
= sin 𝑥 180°rule (note we want sin(𝑥 + 𝑦) in the answer so leave as 180 −( )
sin(𝑥+𝑦)
don’t multiply out!)
𝑑.sin(𝑥+𝑦)
QS =  rearrange
sin 𝑥

In ∆PQS
PS
cos θ = QS remember ∆𝑃𝑄𝑆 is right-angled so the sine rule is not necessary

PS = QS. cos θ rearrange
𝑑.sin(𝑥+𝑦).cos θ
PS = only now sub in QS from  above
sin 𝑥



Do:
Pg 154 Ex 6.1 #1a and 2
Heights and Distances - Worksheet 1 #2
2
€3,83
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
kalebroodt

Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
kalebroodt Cape Peninsula University of Technology
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
4
Lid sinds
4 jaar
Aantal volgers
3
Documenten
49
Laatst verkocht
3 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen