100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

CÁLCULO DE PRIMITIVAS

Beoordeling
-
Verkocht
-
Pagina's
6
Geüpload op
06-10-2021
Geschreven in
2019/2020

Resumen: Cálculo de primitivas, integrales indefinidas, métodos de integración

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
6 oktober 2021
Aantal pagina's
6
Geschreven in
2019/2020
Type
College aantekeningen
Docent(en)
Manuel ordóñez cabrera
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

TEMA 8: CÁLCULO DE PRIMITIVAS PROPIEDADES DE LA INTEGRAL INDEFINIDA (LINEALIDAD)
1. CONCEPTO DE PRIMITIVA. INTEGRAL INDEFINIDA P1. ∫ 𝑘 · 𝑓(𝑥) 𝑑𝑥 = 𝑘 · ∫ 𝑓(𝑥) 𝑑𝑥, siendo 𝑘 ∈ ℝ

• PRIMITIVA DE UNA FUNCIÓN P2. ∫[𝑓(𝑥) ± 𝑔(𝑥)] 𝑑𝑥 = ∫ 𝑓(𝑥) 𝑑𝑥 ± ∫ 𝑔(𝑥) 𝑑𝑥

En las unidades anteriores hemos visto cómo obtener la función derivada de
una función. Ahora nos planteamos resolver el problema inverso: dada una 2. INTEGRALES INDEFINIDAS INMEDIATAS
función f , hallar una función F cuya derivada sea f .
Ejemplo: Dada 𝑓(𝑥) = 3𝑥 2 + 2 , una posibilidad para F sería considerar
𝐹(𝑥) = 𝑥 3 + 2𝑥 , ya que 𝐹′(𝑥) = 𝑓(𝑥).

Definición. Una función F es una primitiva de 𝑓 si y sólo si 𝐹′ = 𝑓.
𝐹 ′ (𝑥) = 𝑓(𝑥), ∀𝑥 ∈ 𝐷𝑜𝑚


PROPOSICIÓN 1.
Si 𝐹 es una primitiva de 𝑓, también lo es 𝐹 + 𝐶, ∀𝐶 ∈ ℝ ya que
(𝐹 + 𝐶)′ = 𝐹 ′ + 𝐶 ′ = 𝑓 + 0 = 𝑓


PROPOSICIÓN 2.
Si 𝐹 𝑦 𝐺 son primitivas de 𝑓, entonces
(𝐹(𝑥) − 𝐺(𝑥))′ = 𝐹 ′ − 𝐺 ′ = 𝑓 − 𝑓 = 0 → 𝑓(𝑥) − 𝐹(𝑥) = 𝐶
para algún 𝐶 ∈ ℝ
𝐺(𝑥) = 𝐹(𝑥) + 𝐶


• INTEGRAL INDEFINIDA

Definición. El conjunto formado por todas las primitivas de una
función 𝑓 se llama integral indefinida de 𝑓 y se representa por:

∫ 𝑓(𝑥) 𝑑𝑥

Esta expresión se lee como sigue: integral de 𝑓 diferencial de 𝑥.

∫ 𝑓(𝑥) 𝑑𝑥 = 𝐹(𝑥) + 𝐶 , ∀𝐶 ∈ ℝ

, 3. MÉTODOS DE INTEGRACIÓN Integrando, ∫ 𝑑(𝑢 · 𝑣) = ∫(𝑣 𝑑𝑢 + 𝑢 𝑑𝑣) → 𝑢 · 𝑣 = ∫ 𝑣 𝑑𝑢 ∫ 𝑢 𝑑𝑣
• INTEGRACIÓN INMEDIATA Despejando, obtenemos la fórmula de integración por partes:
Ejemplos:
− ∫ cos 𝑥 𝑑𝑥 = sen 𝑥 + 𝐶, porque (sen 𝑥)′ = cos 𝑥 ∫ 𝑢𝑑𝑣 = 𝑢 · 𝑣 − ∫ 𝑣 𝑑𝑢

𝑥 𝛼−1
− ∫ 𝑥 𝛼 𝑑𝑥 = + 𝐶, 𝛼 ≠ 1; porque (𝑥 𝛼 )′ = 𝛼𝑥 𝛼−1 , 𝛼 ≠ −1 Ejemplo:
𝛼−1
1 1 ∫ 𝑥 · 𝑠𝑒𝑛 𝑥 𝑑𝑥 = −𝑥 · cos 𝑥 − ∫ − cos 𝑥 𝑑𝑥 = −𝑥 · cos 𝑥 + ∫ cos 𝑥 𝑑𝑥 =
− ∫ 𝑥 −1 𝑑𝑥 = ∫ 𝑑𝑥 = logȁ𝑥 ȁ + 𝐶, porque (logȁ𝑥ȁ)′ = log=ln
𝑥 𝑥 = −𝑥 · cos 𝑥 + 𝑠𝑒𝑛 𝑥 + 𝐶
• INTEGRACIÓN POR DESCOMPOSICIÓN 𝑢 (𝑥 ) = 𝑥 → 𝑢 ′ (𝑥 ) = 1
Este método consiste en expresar la función integrando como combinación 𝑣 ′ (𝑥 ) = 𝑠𝑒𝑛 𝑥 → 𝑣(𝑥 ) = − cos 𝑥
lineal de otras funciones que sabemos integrar y luego aplicar las
Algunos ejemplos en los que podemos usar este método son:
propiedades de linealidad de la integral.
Ejemplos: ▪ Integral del producto de una función polinómica y una función
𝑥4 𝑥3 exponencial (Generalmente se le llama u a la función polinómica)
− ∫(𝑥 3 − 3𝑥 2 + 7) 𝑑𝑥 = ∫ 𝑥 3 𝑑𝑥 − 3 ∫ 𝑥 2 𝑑𝑥 + 7 ∫ 𝑑𝑥 = −3 + 7𝑥 + 𝐶
4 3 ▪ Integral del producto de una función polinómica y una función
− ∫ 𝑡𝑔2 𝑥 𝑑𝑥 = ∫(1 + 𝑡𝑔2 𝑥 − 1)𝑑𝑥 = ∫(1 + 𝑡𝑔2 𝑥)𝑑𝑥 − ∫ 𝑑𝑥 = 𝑡𝑔 𝑥 − 𝑥 + 𝐶 trigonométrica (Generalmente se le llama u a la función polinómica)
▪ Integral del producto de una función exponencial y una función
• INTEGRACIÓN POR SUSTITUCIÓN O POR CAMBIO DE VARIABLE trigonométrica (Da igual la elección de u )
Este método consiste en identificar una parte del integrando con una nueva
▪ Integral del producto de una función logarítmica y una función
variable, con la finalidad de obtener una integral más sencilla.
polinómica (Generalmente se le llama u a la función logarítmica)
∫ 𝑓(𝑥) 𝑑𝑥 = ∫ 𝑓൫𝛽(𝑡)൯ 𝛽 ′ (𝑡) 𝑑𝑡 ▪ Integral del producto de una función trigonométrica recíproca y
una función polinómica (Generalmente se le llama u a la función
trigonométrica recíproca)
𝑥 = 𝛽(𝑡) → 𝑑𝑥 = 𝛽 ′ (𝑡) 𝑑𝑡
4. MÉTODO DE INTEGRACION PARA FUNCIONES RACIONALES
Ejemplo:
• MÉTODO DE DESCOMPOSICIÓN EN FRACCIONES SIMPLES
3
𝑑𝑡 3 3 1ൗ 3 𝑡 ൗ2
∫ 3𝑥ξ1 − 2𝑥 2 𝑑𝑥 = ∫ 3𝑥 ξ𝑡 · −4𝑥 = − 4 ∫ ξ𝑡 𝑑𝑡 = − 4 ∫ 𝑡 2 𝑑𝑡 = −
4 3ൗ2
+𝐶
𝑃(𝑥)
Consideramos una función racional 𝑓(𝑥) = donde P y Q son polinomios
𝑄(𝑥)
con coeficientes reales.
1 − 2𝑥 2 = 𝑡 𝑑𝑡
𝑑𝑥 = Podemos suponer que el grado del numerador es menor que el grado del
−4𝑥 𝑑𝑥 = 𝑑𝑡 −4𝑥
denominador, pues en caso contrario, dividiendo se obtiene:
• INTEGRACIÓN POR PARTES
P(x)= Q(x)·C(x)+ R(x), con grado R(x)< grado Q(x)
A partir de la regla de derivación del producto de dos funciones derivables,
𝑢 y 𝑣, podemos deducir un método para integrar el producto de dos 𝑃(𝑥) 𝑄(𝑥)·𝐶(𝑥) 𝑅(𝑥) 𝑃(𝑥) 𝑅(𝑥)
Luego = + ↔ = 𝐶(𝑥) + y la integración se reduce a
funciones. En efecto: 𝑄(𝑥) 𝑄(𝑥) 𝑄(𝑥) 𝑄(𝑥) 𝑄(𝑥)
𝑅(𝑥)
𝑑(𝑢 · 𝑣 ) = 𝑑𝑢 · 𝑣 + 𝑢 · 𝑑𝑣 → 𝑑(𝑢 · 𝑣 ) = 𝑣 𝑑𝑢 + 𝑢 𝑑𝑣 la función polinómica C(x), que es inmediata, y a la función , en la que el
𝑄(𝑥)
numerador es de grado inferior al denominador.
€2,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
alistats

Maak kennis met de verkoper

Seller avatar
alistats Universidad de Sevilla
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
4 jaar
Aantal volgers
0
Documenten
25
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen