100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Statistiek

Beoordeling
5,0
(2)
Verkocht
6
Pagina's
24
Geüpload op
31-12-2014
Geschreven in
2013/2014

Statistiek samenvatting 2e jaar Toegepaste ICT- Vives











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
31 december 2014
Aantal pagina's
24
Geschreven in
2013/2014
Type
Samenvatting

Voorbeeld van de inhoud

Eline Opsommer 2e jaar Toegepaste ICT-Apps&Gamification




Statistiek
6 Enkele kansverdelingen (pg 1)

6.1 Inleiding (pg 1)

6.2 Combinatoriek (pg 2)
𝑛!
- 𝐶𝑛𝑘 =
𝑘!(𝑛−𝑘)!
2 10!
o Vb. Op hoeveel manieren 2 personen kiezen uit groep van 10? 𝐶10 = = 45
2!(10−2)!
- Speciale gevallen & eigenschappen:
o 𝐶𝑛0 = 1 = 𝐶𝑛𝑛
o 𝐶𝑛1 = n = 𝐶𝑛𝑛−1
o 𝐶𝑛𝑘 = 𝐶𝑛𝑛−𝑘
o 𝑘−1
𝐶𝑛−1 + 𝐶𝑛−1
𝑘
= 𝐶𝑛𝑘
- Driehoek van Pascal: (tabel 1)




- Binomium van Newton:




o Vb. (a+b)³ = b³ + 3ab² + 3a²b + a³


6.3 De Binomiale verdeling (pg 11)
6.3.1 Bernouilli-experiment (pg 11)
- Bernouilli-experiment = experiment met 2 mogelijke uitkomsten -> bij opnieuw doen van experiment
veranderen kansen niet
o Vb. opgooien muntstuk (kop/munt), geboorte kind (jongen/meisje), gokken bij meerkeuzevraag
(juist/fout)
- p = P(S) = kans op succes
q = 1-p = P(M) = kans op mislukking
o Bernouilli-proces = opeenvolging van Bernouilli-experimenten met zelfde kans p op succes

6.3.2 Binomiale kansverdeling (pg 12)
- X is binomiaal verdeeld met parameters n & p als X aantal successen is in bernouilli-proces bestaande uit n
experimenten met kans op succes p
o Notatie: X ~B(n,p)
o Vb. X = aantal zonen in gezin met 4 kinderen: X ~B(4;1/2)



1

,Eline Opsommer 2e jaar Toegepaste ICT-Apps&Gamification



o Vb. X = aantal slechte producten in steekproef van 20 elementen in productie met 25% uitval:
X~B(20;0,25)
- Formule: X ~B(n,p) -> kans op k successen = P(X=k)=𝐶𝑛𝑘 𝑝𝑘 𝑞 𝑛−𝑘
o Vb. kans op 2 zonen in gezin met 4 kinderen: P(X=2) = 𝐶42 0,52 0,52 = 6x0,25x0,25=37,5%

6.3.3 Tabellen (pg 14)
- Formule: X ~B(n,p) -> kans op k successen = P(X=k)=𝐶𝑛𝑘 𝑝𝑘 𝑞 𝑛−𝑘
- Tabel 2: horizontaal p aflezen & verticaal n & k aflezen
o Vb. kans op 2 zonen in gezin met 4 kinderen: X~B(4,2) = P(X=2) = 0,3750




6.3.4 Voorbeelden (pg 14)

6.3.5 Eigenschappen van de binomiale verdeling (pg 16)
Verwachtingswaarde & standaardafwijking
- X ~B(n,p)
o Verwachtingswaarde E(X)=n.p
o Variantie: Var(X)=n.p.q
o Standaardafwijking: 𝜎 (X)=√𝑛. 𝑝. 𝑞
 Vb. X =# keer kop bij 100 worpen met eerlijke munt -> X~B(100;0,5)
 E(X) = 100.0,5 = 50
 𝜎(X)=√100.0,5.0,5 = 5
 P(45 ≤ X ≤ 55) = P(X≤ 55) – P(X≤ 44) = 0,8644 – 0,1356 = 0,7288


Vormeigenschappen
 Symmetrische kansverdeling als n groot is of p 0,5 is




2

, Eline Opsommer 2e jaar Toegepaste ICT-Apps&Gamification




6.4 Hypergeometrische verdeling (pg 24)
𝑘 𝑛−𝑘
𝐶𝑀 𝐶𝑁−𝑀
- Notatie: X~H(N,M;n) -> P(X = k) = 𝑛
𝐶𝑁
- Vb. lototrekking met 45 balletjes & je trekt er 6 uit -> kans dat 4 van de 6 balletjes getallen zijn van 0-10?
o X~H(45,10;6)
 N = totaal aantal = 45
 M = range, speciaal kenmerk = 0-10 = 10
 n = aantal dat je gaat trekken = 6
4 𝐶2
𝐶10 35 4
 P(X = 4) = 6 = 0,0153 (vb. 𝐶10 = 10 nCr 4)
𝐶45
 P(X ≥ 4) = P(X = 4) + P(X = 5) + P(X = 6)
- p = M/N (succes bij 1e trekking)
- Verwachtingswaarde: E(X) = n.p
𝑁−𝑛
- Standaardafwijking: 𝜎 (X)=√𝑛. 𝑝. 𝑞 √
𝑁−1



6.5 De Poissonverdeling (pg 34)
6.5.1 Poissonprocessen (pg 34)
- Limietgeval van binomiale verdeling (bij zeldzame gebeurtenissen)
- Vb. X = # ongevallen op bepaald kruispunt tijdens 1 jaar, drukfouten in boek, oproepen helpdesk
o X~B(n,p) maar n & p zijn meestal onbekend
 Verwachtingswaarde E(X) = n.p = λ is wel gekend
- Notatie: X~P(λ)

6.5.2 De Poissonverdeling (pg 36)
𝜆𝑘 𝑒 −𝜆
- Formule: P(X = k) =
𝑘!
o Vb. X~P(4)
46 𝑒 −4
 Formule: P(X = 6) = = 0,1041 -> tabel 4: k = 6 & 𝜆 = 4
6!
- Vb. X = # vragen tot schadevergoeding hoger dan 500 EUR
o X~P(1,6) want p = 2/100 & 80 personeelsleden
o Kans dat men voor minstens 4 personeelsleden 500 EUR (of meer) moet betalen?
 Tabel 6: P(X ≥ 4) = 0,079

6.5.3 Eigenschappen verwachtingswaarde & standaardafwijking (pg 41)
Verwachtingswaarde & standaardafwijking

- X~P(𝜆)
o Verwachtingswaarde: E(X) = 𝜆
o Variantie: Var(X) = 𝜆 (n.p.q ≈ n.p want p is zeer klein)
o Standaardafwijking: √𝜆


Symmetrische kansverdeling als 𝜆 groot is




3

Beoordelingen van geverifieerde kopers

Alle 2 reviews worden weergegeven
5 jaar geleden

7 jaar geleden

5,0

2 beoordelingen

5
2
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
crzyelinee Katholieke Hogeschool VIVES
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
154
Lid sinds
10 jaar
Aantal volgers
68
Documenten
26
Laatst verkocht
2 maanden geleden

4,4

32 beoordelingen

5
20
4
7
3
4
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen