100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary The Logic Manual - Chapter 1 Notes

Beoordeling
-
Verkocht
2
Pagina's
6
Geüpload op
09-08-2021
Geschreven in
2021/2022

Notes on Chapter 1 of the Logic Manual by Volker Halbach. Written by a student at Oxford University achieving first class grades in logic This contains all definitions and relevant material from the original text.

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
1
Geüpload op
9 augustus 2021
Aantal pagina's
6
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

1. Sets, Relations and Arguments
1.1: sets
A set is a collection of objects

The objects in the collection are elements in that set

Sets are identical only if they have the same elements
E.g. Set of animals with kidneys is identical to set of animals with heart
Because exactly those animals that have kidneys also have a heart and vice versa

𝑎∈𝑆
A is an element of S


The one set that contains no elements (the empty set)

{London, Munich} = {Munich, London}
A set containing London and Munich
This method of designating sets fails when:
• One lacks names for elements in the set
• There are infinitely or impractically many elements

{x : x is an animal with a heart}
A set containing all animals that have a heart

{x : x is blue all over or x is red all over}
A set containing all objects either blue or red all over

1.2: Binary Relations
Ordered pairs (often referred to as pairs):
<London, Munich>
Unlike a set with two elements the order of the components matters

<d,e> and <f,g> are only identical is d=f, e=g

Definition 1.1
A set is a binary relation if and only if it contains only ordered pairs

∅ is a binary relation because it does not contain anything that is not an ordered pair

'iff' is an abbreviation of 'if and only if'

Definition 1.2
A binary relation R is
1. Reflexive on a set S iff for all elements d of S the pair <d,d> is an element
of R
R is reflexive on a set S if it relates every element of X to itself
E.g. The relation "is equal to" is reflexive over the set of real numbers
E.g. From the set A = {p,q,r,s}, R={<p,p>,<p,r>,<r,r>,<s,s>,<r,s>}

, 2. Symmetric on a set S iff for all elements d, e of S: if <d,e>∈ 𝑹 then <e,d>∈
𝑹
E.g. Set a={a,b,c} R={<a,b>,<a,c>,<b,a>,<c,a>,<a,a>}
iii. Asymmetric on a set s iff for no elements d,e of S: <d,e>∈ R and <e,d>∈ R
This means that it MUST be irreflexive (no element is related to itself) and
antisymmetric
E.g. Sed A={a,b,c} R={<a,b>,<a,c>}
iv. Antisymmetric on a set S iff for no two distinct (that is, different) elements
d,e of S: <d,e>∈ R and <e,d> ∈ R
This means that in an antisymmetric set <d,e>,<e,d> is true iff d=e
Can contain reflexive relations
E.g. A={a,b,c} R={<a,b>,<a,a>,<c,a>}
v. Transitive on a set S iff for all elements d,e,f of S: if <d,e>∈ R and <e,f>∈
R, then also <d,f>∈ R
E.g. A={a,b,c} R={<a,c>,<c,b>,<a,b>}
NOT R={<a,b>,<b,c>) (because <a,c> would be required)
If two elements are indirectly related (through other elements) then they also require a
direct relation

Definition 1.3
A Binary relation R is
i. Symmetric iff it is symmetric on all sets
ii. Asymmetric iff it is asymmetric on all sets
iii. Antisymmetric iff it is antisymmetric on all sets
iv. Transitive iff it is transitive on all sets


Relations and their properties can be visualised by diagrams

Examples:

{<France, Italy>,<Italy, Austria>,<France, France>,<Italy, Italy>,<Austria, Austria>}




Therefore on the set {France, Italy, Austria} the relation is reflexive and antisymmetric,
not transitive (<France, Austria> would be required), not symmetric (there are one-way
arrows), not asymmetric (there are reflexive elements)

{<Eiffel Tower ,Ponte Vecchio>,<Ponte Vecchio, Ponte Vecchio>,<Ponte Vecchio,
Eiffel Tower>}
€4,12
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
anthony5

Maak kennis met de verkoper

Seller avatar
anthony5 Oxford University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
5
Lid sinds
4 jaar
Aantal volgers
3
Documenten
6
Laatst verkocht
1 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen