100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Full Summary Lectures Quantitative Methods

Beoordeling
-
Verkocht
1
Pagina's
76
Geüpload op
02-07-2021
Geschreven in
2019/2020

Summary of lectures of the course Quantitative Methods. My grade: 8.7

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Heel boek samengevat?
Ja
Geüpload op
2 juli 2021
Aantal pagina's
76
Geschreven in
2019/2020
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Lecture 1

Aims of this course
- To give you an appreciation of the increasingly important role of quantitative methods
in empirical research.
- To provide some useful quantitative methods that you could use in empirical
research
-test hypotheses.
-answer research questions.
-make predictions about an outcome of relevance.
- To convince you that quantitative methods are not the devil’s work.

Role of statistics in research, in this course: 5 & 6
Empirical cycle
1. Select topic
2. Focus question
3. Design study
4. Collect data
5. Analyze data
6. Interpret data
7. Inform others

Descriptive vs. inferential statistics (beschrijvende vs. inferentiële statistiek)
Two main branches of statistics:
1. Descriptive statistics
Beschrijven, organiseren, samenvatten, weergeven data.
2. Inferential statistics
Gebruik van probabilistische technieken om een sample te analyseren om ons iets te
vertellen over een populatie.

Introduction to statistics
You will be able to
- define sampling and describe the relationship between a sample and a population.
- describe the uses of descriptive vs. inferential statistics.
- describe the limits of statistics for establishing causality.

● Sample = kleine groep genomen van een populatie waarin we geïnteresseerd zijn.
● IF the sample is representative of the population, THEN we can make an "informed
guess" about population values based on sample values.
● A samples is never a perfect representation of the population, but…
- A randomly selected sample is usually representative of the population from
which it was drawn.
- Samples are usually not really random (in practice), so think about ways in
which your sample might be different from the population and give a
misleading impression about the population.

,Small word vs big world
- The proportion we calculated for the last row exactly described the proportion of men
in the “small world" of the last. There is no uncertainty about this. (Descriptive
statistics).
- This proportion was also our best guess about the proportion of men in the “big
world" of the whole room and the whole course (Inferential statistics).
- When we use small world statistics to make guesses about the big world, there is
always some uncertainty (sample is vrijwel nooit precies hetzelfde als populatie).

Descriptive vs inferential statistics
This touches upon the distinction between descriptive and inferential statistics.
● Descriptive statistics: Summarizing data from a sample. There is no uncertainty.
● Inferential statistics: Making a guess about population values, based on your
sample.
- Because a sample is never perfectly representative of the population, there is
sampling error. Thus, we always express our uncertainty when using
inferential statistics.
- Later in the course, you will hear terms like standard error and p-value, which
are both ways of expressing uncertainty when using a sample to make
guesses about the population.

Random sampling
The best way to minimize sampling error, is to have a random sample, where every
individual in the population has an equal chance to be included.
- Was our sample (of the front row) random?
→ No.
- Could there be differences between people who sit on the first row, and people who
sit in the back row, that bias our estimate of the % men in the room?
→ Interest in the course, vision.
In real research, we almost never have a random sample. We often have convenience
samples, which may be different from the population in some way (biased).

,Om een betrouwbaar sample te hebben, moet sample groot genoeg zijn. Bijv. bij onderzoek
naar non-binary mensen een groter sample, omdat de populatie vrij klein is.

What about causality? - Experimental methods
Many researchers are interested in questions of causality.
● Statistics DO NOT establish causality.
● Research designs can help establish causality.

Experimental method:
● Randomly assign people to two groups; give one group a pill, and the other group a
placebo.
● If you find a relationship between group and outcome, you can argue that this
relationship is causal because:
- You randomly assigned people to groups, so there should be no difference at
the beginning.
- You treated the groups differently, so the only difference should be the
treatment.

What about causality? - Correlational methods
Descriptive/correlational methods: “naturally occurring” or survey/questionnaire data
about things you are interested in.
You can not infer causal relationships, but you can still use the data to answer research
questions!
● You can use every statistical analysis you want to find interesting/useful
relationships!
● But keep in mind: you can never demonstrate causality.
● Spurious effects appear when two things you measured are both caused by a third
thing, that you didn't measure.

Talking about data
You will be able to
- differentiate between cases and variables.
- define the four levels of measurement.
- identify the level of measurement of several variables.

Talking about data
If you have a sample, you will want to collect some data. In social science, we often talk
about cases and variables.

● Cases can be individual people, or companies, or countries.
● Variables are properties that differ between cases.
You could each be a case, and your sex and course of study are two variables

Level of measurement
Level of measurement: what kind of values does a variable have?
For example, height can take any positive value in centimeters.

, Sex, on the other hand, can have one or two (or more) ‘values’.
These distinctions are important!

➢ Is the variable continuous (height, many different values) or categorical (groups)?
➢ If you have groups: are these groups nominal (different only by name), or ordinal
(ordered groups)?
➢ If you have continuous variables, are they at interval level (distance between
measurements is meaningful) or ratio (there is an absolute 0 point)?

Categorial vs continuous
Categorical: the variable measures whether a case belongs to one of several categories.
➔ Discrete; the variable takes exact values (whole numbers, text labels).
➔ It is not possible to fall between categories.
➔ Bijv. sex (male/female/intersex), gender
(male/female/pangender/agender/genderfluid/other non-binary), happiness on a 1-5
scale.
Continuous: Variable can take any numerical value.
➔ bijv. temperature (-273.15 to ∞(?) C), age (0 to 122 years).



NOIR level of measurement - Categorical
Some finer distinctions are made, which you can remember using the mnemonic:‘n o i r’ =
‘black’ in French.
● Nominal
- Categorical variables.
- Each category is different in name only, does not correspond to values or
order (=nominal).
- bijv. male or female or intersex.

● Ordinal
- Ordered categories.
- bijv. low to high SES; level of education; 1st place, 2nd place, 3rd place.


Noir level of measurement - Continuous
● Interval
- Continuous measurement.
- Distance is meaningful: a step from 1 to 2 is exactly as “far” as a step from 2
to 3.
- There is no true 0-point
→ Temperature in Celsius: 0 is the freezing point of water.

→ Temperature in Fahrenheit: 0 is just plain cold!
● Ratio
- Same as interval, but with a true 0-point; 0 means something!!
€9,19
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
erasmusuniversitysummaries Erasmus Universiteit Rotterdam
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
252
Lid sinds
4 jaar
Aantal volgers
137
Documenten
58
Laatst verkocht
1 week geleden

4,2

29 beoordelingen

5
11
4
14
3
3
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen