100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Applied Data Analysis (ADA) lectures written out / college samenvatting (english) 85 p.

Beoordeling
2,5
(2)
Verkocht
13
Pagina's
85
Geüpload op
19-06-2021
Geschreven in
2020/2021

This 85 pages file contains all 8 ADA lectures completely written out. The document is in English.

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
19 juni 2021
Aantal pagina's
85
Geschreven in
2020/2021
Type
College aantekeningen
Docent(en)
Peter de heus
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

Applied Data Analysis
Tentamen 16 juni 2021


College 1 : EXPLORING DATA

Literatuur: Field, A. (2018). Discovering statistics using IBM SPSS Statistics (5th edition).

Chapter 2 (§ 2.1 – 2.10)
Chapter 3 (§ 3.1 – 3.7)
Chapter 5 (§ 5.1 – 5.9)
Chapter 6 (p. 243-252, 268-276)
Chapter 19 (§ 19.1 – 19.3.6, 19.7)



In this lecture we will learn how we can explore our data.

Why explore?

Generally, research is (and should be) hypothetical-deductive.
This means we should:
- First formulate a hypothesis (on theoretical grounds) and deduce which pattern of
results should follow from it.
- Then, collect data to test whether these hypotheses apply (hypothesis are always
about the population!).

Usually, this leads to a focused prediction (e.g., females have higher social skills score than
males: µf > µm. In a social skills test, females should score higher than males).

Two reasons to explore our data:

1. We do not want to limit ourselves to only our main prediction! Sometimes, unexpected
results are the most interesting ones (isn’t science about finding out new things)
2. Almost always, we need to check assumptions of hypothesis tests.


Main steps in data analysis

1. Explore. Look what’s in your data.
2. Check assumptions. Significance tests make assumptions about the data, but do they
apply in your case? (and if violated, what has to be done?)
3. Hypothesis testing. Determine if a predicted relationship exists in the sample (e.g. a
correlation between two variables) and if it can be generalized from sample to
population.
4. Interpretation. Analyze the nature of the relationships between variables.
5. Write. Report your results (following APA rules). Preliminary step. Decide which
technique is most suitable for your research question.


1

,Preliminary step: Decide which technique is most suitable for your research question

Exploring frequency distributions

Two basic ways of exploration
1. Make pictures (histograms, boxplots)
2. Compute statistics (mean, median, mode, variance, standard deviation, skewness,
kurtosis, Kolgomorov-Smirnov test). We will do both, with emphasis on normality
Remark. Very often the normality assumption is not as important as suggested by Field,
because many tests are robust against violation of this assumption.

Histogram

Histogram. Picture of a frequency distribution (categories on X-axis, numbers of individuals
on Y-axis).
Normality at first sight. From left to right more deviation from normality.
(middle and right histogram are positively skewed. Most clinical scored are positively
skewed, because most people have low scores on for example depression)




Boxplot

Boxplot is exclusively defined in terms of percentiles. Not in means and standard deviations!




2

,Boxplot uitleg:

Median: middelste score
75th percentile: 75% van de scores ligt onder dit getal
25th percentile: 25% van de scores ligt onder dit getal
Sticks: either 1,5 times de box height of de laagste/hoogste score. In dit plaatje is de onderste stick de
laagste score en de bovenste stick 1,5 x box height.
Outliers: - Scores die verder dan 1,5 x de box height (sticks) aangegeven met cirkels
- Scores die verder dan 3x de box height (sticks) aangegeven met sterretjes

Warning. Boxplots are based on percentiles (median is 50th percentile). They do not
necessarily give the same results as measures based on means and variances.


No perfect normality or symmetry in previous boxplot, but it can be much worse. Look at
anxiety boxplot.

- Very positively skewed distribution.
- Most people are low on anxiety: more than 25 %
has lowest possible score (→ 25th percentile =
lowest score → no “stick” under box)
- A lot of outliers and extreme scores.

No lower stick means that more than 25% of the
lower scores have exactly the same score




Use boxplots to compare different variables, or to compare different groups on same variable (here:
occupation)




3

, Boxplots for different variables are only useful when variables have comparable measuring
scales. DON’T DO THIS! These boxplots are very ugly together because the variables have
different scales. (0-3 and 0-15)




Skewness and kurtosis

Skewness: measure of asymmetry of the distribution.
- perfect symmetry → skewness = 0;
- long tail of distribution to the right → skewness > 0;
- long tail of distribution to the left → skewness < 0.

Normal distribution is always 0 skew. But 0 skew does not mean
normal per se.




Kurtosis: measure of “peakedness” of a distribution (actually whether a distribution is more or
less “peaked” than you would expect on the basis of the standard deviation and the normality
assumption).
- Perfectly normal distribution → kurtosis = 0 (but kurtosis = 0 does not necessarily
imply normal distribution).
- Peak higher than normal → kurtosis > 0 (red: more scores in the middle and in the
tails).
- Peak lower than normal (i.e. distribution to flat) → kurtosis < 0 (green: more
scores between the middle and the tails).

Attention! Positive kurtosis does not only mean a higher peak! It also means more scores
in the tails. Only a higher peak does not have to mean positive kurtosis, but could also
mean a low standard deviation.


4

Beoordelingen van geverifieerde kopers

Alle 2 reviews worden weergegeven
3 jaar geleden

4 jaar geleden

2,5

2 beoordelingen

5
0
4
1
3
0
2
0
1
1
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
claire225 Universiteit Leiden
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
42
Lid sinds
4 jaar
Aantal volgers
32
Documenten
5
Laatst verkocht
7 maanden geleden

1,7

6 beoordelingen

5
0
4
1
3
0
2
1
1
4

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen