100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

MAT2615 Assignment 2 (COMPLETE ANSWERS) 2026 - DUE June 2026;

Beoordeling
-
Verkocht
-
Pagina's
10
Cijfer
A+
Geüpload op
03-02-2026
Geschreven in
2025/2026

MAT2615 Assignment 2 (COMPLETE ANSWERS) 2026 - DUE June 2026;

Instelling
Vak

Voorbeeld van de inhoud

MAT2615 Assignment 2 (COMPLETE ANSWERS) 2026 - DUE June 2026;.
Consider the R2 − R function f defined by f (x, y) = 1 − x2 − y2. Let C be
the contour curve of f through the point (1,−1), let L be the tangent to C at
(x, y) = (1, 1) and let V be the tangent plane to f at (x, y) = (1, 1). (a) Find
the equation of the curve C. (2) (b) Find a vector in R2 that is perpendicular
to C at (x, y) = (1, 1). (2) (c) Find the Cartesian equation of the line L. (3) (d)
Find a vector in R3 that is perpendicular to the graph of f at the point (x, y, z)
= (1, 1, 3).(3) (e) Find the Cartesian equation of the plane V. (3) (f) Draw a
sketch to visualize the graph of f , together with appropriate sections of the
line L and the plane V. Also show the vectors that you obtained in (b) and (d)
on your sketch. (3) Hints • Study Definitions 3.2.5 and 3.2.9. Note that the
level of C is given by f (1, 1). • By a vector perpendicular to a curve at a
given point, we mean a vector perpendicular to the tangent to the curve at
that point. Use Theorem 7.9.1 to find a vector perpendicular to C at the point
(1, 1). • Study Remark 2.12.2(1) and use Definition 2.12.1 to find the
Cartesian equation of L. Or, equivalently, use Definition 7.9.6. (Note that, in
the case n = 2, the formula in Definition 7.9.6 gives a Cartesian equation for
a tangent to a contour curve.) • By a vector perpendicular to a surface at a
given point, we mean a vector perpendicular to the tangent plane to the
surface at that point. Define an R3 − R function g such that the graph of f is
a contour surface of g, and then use Theorem 7.9.3 to find a vector
perpendicular to V at the point (1, 1, 3). • Use Definition 2.12.1 or Definition
7.9.6 (with g in the place of f ) to find the equation of V, or use Definition
7.5.3. (Read Remark 7.5.4(2).) [16] 2.
(Chapter 9) Consider the R2 − R function f defined by f (x, y) = sin x cos y.
(a) Find the second order Taylor Polynomial of f about the point π 4 , π 4 .
Leave your answer in the form of a polynomial in x − π 4 and y − π 4 .
(This form is convenient for evaluating function values at points near π 4 , π
4 .) (6) (b) Use your answer to (a) to estimate the value of e0,1 ln 0, 9.
Compare your answer with the approximation given by a pocket calculator.
(2) [8] 2 Downloaded by Edge Tutor () lOMoARcPSD| MAT2615/AS2/0/2026 3.
(Sections 11.1 - 11.3, 7.5 and 9.3) (a) State the Implicit Function Theorem for
an equation in the three variables, x y and z.(2) (b) Use the Implicit Function
Theorem to show that the equation xyz = cos (x + y + z) has a smooth
unique local solution of the form z = g(x, y) about the point (0, 0, π2 ). Then
find a linear approximation for g about (0, 0). Hints • Use the method of
Example 11.2.6, but take into account that you are dealing with an equation
in three variables here and that g in this case is a function of two variables. •
Before you apply the Implicit Function Theorem you should show that all the
necessary conditions are satisfied. • Study Remark 11.3.3(1) and Remark
9.3.6(2). (6) [8] 4. (Sections 1.3, 11.2 and 11.3) Consider the 2-dimensional
vector field F defined by F(x, y) =



MAT2615 – APPLIED MATHEMATICS

, ASSIGNMENT 2: COMPLETE ANSWERS AND
EXPLANATIONS
STUDY YEAR: 2026



DOCUMENT INFORMATION (FOR QUALITY &
VISIBILITY)
Title

MAT2615 Assignment 2 – Complete Solutions with Detailed Explanations (2026)

Module

Applied Mathematics (Multivariable Calculus)

Description

This document contains fully worked and thoroughly explained solutions to all questions in
MAT2615 Assignment 2 (2026). The assignment covers contour curves, gradients, tangent lines
and planes, Taylor polynomials, the Implicit Function Theorem, and linear approximations. Each
solution is presented in a clear academic format suitable for university assessment and online
academic platforms.

Tags

MAT2615, Applied Mathematics, Assignment 2, Multivariable Calculus, 2026, Complete
Solutions, Taylor Polynomials, Implicit Function Theorem, Tangent Planes, Contour Curves




PAGE 1 – COVER PAGE
Module Code: MAT2615
Assignment: Assignment 2
Year: 2026
Institution: UNISA
Document Type: Fully Worked Solutions

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
3 februari 2026
Aantal pagina's
10
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

€2,18
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
fasterreach08

Maak kennis met de verkoper

Seller avatar
fasterreach08 Teach me 2
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
Nieuw op Stuvia
Lid sinds
3 weken
Aantal volgers
0
Documenten
29
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen