100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Summary: Data Science Ethics

Beoordeling
-
Verkocht
-
Pagina's
130
Geüpload op
26-01-2026
Geschreven in
2025/2026

This document summarizes the "Data Science Ethics" (David Martens, year ) course, which focuses on making morally responsible choices within the field of data science. The core of the curriculum is the FAT framework (Fairness, Accountability, and Transparency), applied to every stage of the process, from data collection to model deployment. It delves into technical solutions for privacy protection, such as encryption, hashing, and differential privacy. Additionally, the summary discusses the societal impact of AI, including the European AI Act and the risks associated with advanced systems like Agentic AI. Finally, the text emphasizes the importance of fairness and preventing algorithmic bias to minimize harmful consequences for individuals.

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Ja
Geüpload op
26 januari 2026
Aantal pagina's
130
Geschreven in
2025/2026
Type
Samenvatting

Voorbeeld van de inhoud

Data Science & Ethics
Les 1: Introduction
Responsible AI

If it was the best of times: If it was the worst of times:

§ Reduce risk § Data leaks
§ Reduce crime § Discrimination
§ Increase profitability § Digital pawns
§ Improve medical diagnosis § Filter bubble
§ Increased “good” § Increased “bad”


Data Science & Ethics
§ Ethics: “moral principles that control or influence a person’s behavior”
§ Moral: “connected with principles of right and wrong behavior”

Law: what you can do
Ethics: what you should do (should you be doing this even though it is lawfull?)

§ Responsible AI (formal definition): The design and application of AI that is
aligned with the moral values of society
Why Care?
1. Expected from society
§ Generation Z
• Born 1995 – 2010
• 90 million in the US
• Cares about social justices and ethics
 Gen z is naturally starting to care more
2. Huge potential risks
§ Be aware of the risks and countermeasures
§ Risks for humans


1

, • Physical and mental well-being (self-driving)
• Privacy
• Discrimination
 For example, AI determining whether
 Risks for businesses
you receive a loan or not so there is a
• Reputational
potential risk, same with cv
• Financial (fines, less customers, …)
screenings using AI models
3. Potential benefits
§ Understanding ethical concerns and applying techniques to deal with
this, can improve the data, model and be a marketing instrument
• Remove bias in data: improve the accuracy and fairness of the model
• Explain predictions: improve the trust the model
• Ensure proper data gathering better data quality
• Part of a company’s brand (cf. 1. Expected from society)


4. The AI Act
 Risk-based approach to regulate AI
 Requirements for high-risk uses of AI
• Establish safeguards against biases in datasets
• Prescribed data governance and management practices
• Ability to verify and trace back outputs through the system’s life
cycle
• Including provisions for acceptable levels of transparency and
understandability for users of the systems,
• Appropriate human oversight over the system generally.


Summary:
§ Being ethical should be a Life goal in itself (philosophical goal)
§ Societal and business reasons:
1. Expected from society 3. Data science ethics can
2. Huge potential risks bring value
4. AI Act


2

,Goal of the course
Provide guidance and insight on deciding what is right and wrong when conducting
data science.

Machine Learning

§ Prerequisite
§ Machine Learning: automatic
Machine learning
extraction of knowledge from
algorithm Pattern or
data
§ Setting the scene with credit
scoring example
Definitions
§ Data Science Ethics: the domain of what is right and wrong when doing data
science

§ Responsible AI: the development and application of AI that is aligned with
moral values in society

Ethics Theories: Utilitarianism vs Deontological Ethics
§ Utilitarianism:
• =consequentialism, what is produced in the consequence of the act
• Action is moral if the consequence is moral, means to an end
• Justifies immoral things

§ Deontology:
• Not doing immoral actions
• Outcome does not matter

Aristole’s Nicomachean Ethic
§ Moral behavior can be found at the mean between two extremes: excess and
deficiency.

3

,  ‘Golden mean’(between the two extremes) of data science ethics.

§ Between these 2 extremes:
• Deficiency: Not using any data at all
• Excess: Using all available data for any application, without any concern for

 Therethe ethical
should concerns
always be a human who deals with these extremes!

Data Science Ethics Equilibrium
§ = A state of data science practices determined by the ethical concerns and utility
of data science.




1. Eg churn prediction
2. Eg CV sorting

 High risks means doing more about
ethical concerns




Trolley Problem
 Well-known thought experiment in ethics:  Variants
utilitarian vs deontological ethics • What if single person is your child
or partner?
• What if you’re on a bridge, and
can only stop the trolley by pushing
a man standing next to you off the
bridge?

 Example with self-driving car: should it kill the passengers or the person
walking on the road. Here AI ethics need to be discussed in great detail

4
€5,98
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
ACCU04257

Maak kennis met de verkoper

Seller avatar
ACCU04257 Universiteit Antwerpen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
Nieuw op Stuvia
Lid sinds
1 dag
Aantal volgers
0
Documenten
3
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen