100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Samenvatting chapter 4 - Numerical Modelling and Design of El. & Mech sys. (E048400A)

Beoordeling
-
Verkocht
-
Pagina's
18
Geüpload op
24-01-2026
Geschreven in
2025/2026

This is a summary of chapter 4 of the design part of this course.











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
24 januari 2026
Aantal pagina's
18
Geschreven in
2025/2026
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Chapter 4
: Constrained
gradient-based optimization
4 11 . Intro + Problem
formulation
~s
optim problems
. are
rarely unconstrained


Build
further the methods from Chapter 3 ?

on n



first introduce
optimality conditions for constrained
opt problem
then
~
focus on 3 main methods
2
{
w
Penalty methods
=
sequential quads progr .
.
(SQP)
·

interior-point methods
in
general : minf(x
t X /Mx dim ) variable vector
2 . .



g(x)20 -

-
ps vecter constraints
ha = eg h : --R
: /R -

" inequality
vector
0 ~
D
equality constraints
↳ both
of (f) .
+ contraints
(g ,
h)
_
↳ con be non-lineair f


↳ should be
2
continuous

constraints ?
-to solve a contrained
problem - Also
requir gradients of all

값 값
1





Yn Similar
Ig (Mg
=



: :
-- .




,




재행 ? :
↓ xnx)
(MnXMx) ↳
for inequality constraint
.



G 2) conditions
.


Optimality
↳ Not as
straight forward as those
for unconstrained

start for
~
equality contr .


*
Equality Constraints


~
again start fum order Tayler series
expansion of objective function .




f(x p) f(x)
+ = +
ffxxp
~ Since ** 0 min =>
OfSX 1Tp *
3 0 ④



If unconstrained
only
the
inequality would be If (x *

problem
-
to
satisfy
were 1 =
,
way

-

If problem is constrained ,
function increase & still applies ,
but
p
must be also a



feasible direction
direction 12 order
to
find feasible write
Taylor expansion
~ can
,
we a


constraint
for each
equality


,hj(x hj(x) ohjkx)
+
+
p) = +
pj 1
,..., order
mn
first
=




here
dso A feasibility
~
assume
higher order
neglected because
of small step size
T




jThe ne
Assuming is
feasible point-phj(x) 0
for all
=
X a




#‰





here Mx =
Mn = 2


feasible space reduced
to
single point
this has to
r means
any feasible di. => no
optim .



freedom !
lis in
nulspace of Jacobian
of the constraints In?




_
Assume rank /i µ
In has full de Constraint
grad linearly indep. (
>
-
.
e . .
Or




>
-



feasible space is sulspace of dimension Mx -



Mp .




for opt . To be
possible nx > un Why ?

~
for one contraint ,
we have thip = o



feasible space corresponds to
tangent plane




- >
for 2 or moe contraints ,
feorible space
reduces to intersection of all tangent hyperplanes ?

~
in 3D -- a line




~
for constrained
optimality > need to
satisfy both If 1 p3 *
, 0 and
Ip(x)p =




-for equality constrained ,
if p
is
feasible ,
-p
must dro be
feasible
=>

ratify
My way to OfIp 70 is
if IfTp =




~ in sum ,
for
*
to be a contrained
optimum ,
we
requir Of *
p
= 0
for all
p such
that

Yu ( t ip
* = o

, other words, vanish
projection of dy function's gradient
~ must
in .
into
feasible space

If(x upon (th(x
Chasx Ohnn' ** )
* *
or
*
) = ) , ) , . . . ,




hers this is illustrated
for case
2 constraints

in 3D




>
-
constrained optimum If * p = o
require If to be I to nullspace of In
motic contains all vectors I to it's nullspace
~ row
space of a


because ofTp
>
-
rowe are
gradients of the constraints


-
objective funct gradient must be a linear comb
of gradients of constraints


Ef ( +
*
) =

λ jchjs + * 1

associated with each constraints
Lagrange multipliers
↳ ,
one


=
first-order optimality condition
for equality contraint are



ef ( x *
1 -

yn /x ) λ

h(x) 0
=




Def In constrained optio ,
the
lagrangian function being
a scalar is
defined a




2(x, x) =

f(x) + h5xX

hagrang
Considered to
;an multiplien ora


be
independant
Theorem
gradient of h wrt
king both andit
h EfA reYn *
*
e. =
* *
) λ = 0




第h = hir *
) = 0


with x linear
satisfying independence constraint
qualification
With
lagrangian ,
we
transformed a contrained problem I
design var
, M eg. Contraints


into unconstrained
Adding
by
variable x / MM I
>
new
-



problem
.




desivation
of first-order optimally assumes
gradients of constraints
linearly independent In full rew
>

rank




€4,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
florvandamme

Ook beschikbaar in voordeelbundel

Thumbnail
Voordeelbundel
Summary bundel Numerical Modelling and Design of Electrical and Mechanical Systems
-
4 2026
€ 20,03 Meer info

Maak kennis met de verkoper

Seller avatar
florvandamme Universiteit Gent
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
Nieuw op Stuvia
Lid sinds
2 weken
Aantal volgers
0
Documenten
16
Laatst verkocht
-
Burgie01

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen