100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

free electron theory and semiconductors

Beoordeling
-
Verkocht
-
Pagina's
7
Cijfer
A
Geüpload op
18-01-2026
Geschreven in
2025/2026

This document contains detailed question and answers of free electron theory and semiconductors

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Onbekend
Vak

Documentinformatie

Geüpload op
18 januari 2026
Aantal pagina's
7
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

UNIT IV
FREE ELECTRON THEORY & SEMICONDUCTORS
Short Answer Type Questions

1. What are energy bands?
Ans: Allowed energy levels that electrons can occupy in a solid, formed due to the
interaction of many closely spaced atomic orbitals.
2. What is extrinsic semiconductor?
Ans: An extrinsic semiconductor is a semiconductor whose conductivity is increased
by adding impurity atoms (doping)
3. What are the majority and minority carriers in p-type and n-type semiconductor?
Ans: p-type:
• Majority carriers → Holes
• Minority carriers → Electrons
n-type:
• Majority carriers → Electrons
• Minority carriers → Holes
4. By doping fifth group elements in germanium, which type of semiconductor is
obtained ?
Ans: Doping Ge with group-5 elements (P, As, Sb) gives an n-type semiconductor.
5. Define Diffusion current. Define Drift current.
Ans: Diffusion current: Current caused by the movement of charge carriers from
high concentration to low concentration. Drift current: Current caused by the
motion of carriers under the influence of an external electric field.
6. Define Quantum Dots?
Ans: Quantum dots are 0-dimensional semiconductor nanocrystals in which
electrons are confined in all three directions.
7. Define 1-dimensioanl and 2 dimensional quantum materials ?
Ans: 1-D quantum materials: Materials where electrons are confined in two
directions, allowing motion only along one axis (e.g., nanotubes). 2-D quantum
materials: Materials confined in one direction, with electrons free to move in a plane
(e.g., graphene).
8. Write an application of quantum hall effect ?
Ans: Quantum Hall Effect is used in precision resistance standards for electrical
metrology.
9. Write an example of quantum sensor ?
Ans: NV-center diamond sensor used for magnetic field detection.
10. Write an advantage and challenge of Quantum dot as qubit.
Ans: Advantage: Compatible with semiconductor fabrication; scalable. Challenge:
Require extremely low temperatures and precise control.

, Essay-type questions (Long answers)

1. Obtain an expression for electrical conductivity on the basis of quantum
free electron theory.
Ans:
Sommerfeld applied the principles of quantum mechanics and Fermi-Dirac statistics to the classical
free electron theory.
According to quantum theory, the free electrons occupy different energy levels up to Fermi
level at 0 K. So they possess different energies and hence they possess different velocities.
We assume a sphere of radius VF, at the origin of velocity space as shown
Distribution of
in figure.
velocities of free
Each point inside the sphere represents velocity of a free electron. This
sphere is called “Fermi Sphere” E
In the absence of an external electric field, the velocity vectors cancel
each other in pairs and the net velocity of electrons in all directions is zero.
Now if an electric field applied externally along negative x – direction on
these electrons as shown in figure, then a force eE acts on each electrons along
x – direction.
Displacement
In quantum theory, the velocity of a free electron can be represented in
of velocities
terms of propagation vector as
sphere
2mE ℏ2 𝜅2 p2
𝜅2 = or E = =
ℏ2 2m 2m

ℏ𝜅
i.e., p = ℏ𝜅 = m𝑣 ⇒ 𝑣 = m
→(1)

Differentiating equation (1) w.r.t time t
𝑑𝑣 ℏ 𝑑𝜅
𝑎= 𝑑𝑡
= m 𝑑𝑡 →(2)

The force on an electron due to an applied electric field is eE
ℏ 𝑑𝜅 𝑑𝜅
𝑒E = m × m 𝑑𝑡 or ℏ 𝑑𝑡 = 𝑒E →(3)
𝑒E
𝑑𝜅 = ℏ
𝑑𝑡 →(4)
𝑒E𝑡
Integrating equation (4) gives 𝜅(𝑡) − 𝜅(0) = ℏ
→(5)

Let the mean collision time and mean free path of a free electron present at Fermi surface is
𝜆F
represented as τF and λF, respectively then, we have τF =
VF
→(6)
For an electron at Fermi level, consider t = τF and 𝜅(𝑡) − 𝜅(0) = ∆𝜅 in equation (5)
€6,65
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
tabassumy

Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
tabassumy
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
Nieuw op Stuvia
Lid sinds
2 weken
Aantal volgers
0
Documenten
17
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen