100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Metric Space Topology: Examples, Exercises and Solutions (Cheung, 2024)

Beoordeling
-
Verkocht
-
Pagina's
428
Cijfer
A+
Geüpload op
12-01-2026
Geschreven in
2025/2026

INSTANT DOWNLOAD PDF — Metric Space Topology: Examples, Exercises and Solutions* (2024) by Wing-sum Cheung provides rigorous, step-by-step answers to a wide range of problems in metric spaces, open and closed sets, convergence, continuity, compactness, completeness, and connectedness. Designed for undergraduate and graduate students in mathematics, it’s a clear and structured companion for mastering the foundations of topology through applied examples. metric space topology solutions, wing-sum cheung 2024 answers, topology examples and exercises, compactness and continuity problems, convergence in metric spaces, mathematical analysis solutions, open and closed sets exercises, topology for undergraduates, metric space solved problems, advanced math textbook solutions #Topology, #MetricSpaces, #MathSolutions, #WingSumCheung, #AdvancedMathematics, #MathematicalAnalysis, #TopologyExercises, #GraduateMathematics, #TextbookSolutions, #PureMath

Meer zien Lees minder
Instelling
Pathophysiology
Vak
Pathophysiology











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Pathophysiology
Vak
Pathophysiology

Documentinformatie

Geüpload op
12 januari 2026
Aantal pagina's
428
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

, Contents


Preface vii

A Note on the Convention xi
About the Author xiii

1. Metric Spaces 1
1.1 Definitions and Examples .............................................................. 1
Exercise 1.1: Part A ..................................................... 10
Exercise 1.1: Part B ..................................................... 14
1.2 Topology of Metric Spaces.......................................................... 36
Exercise 1.2: Part A ..................................................... 50
Exercise 1.2: Part B ..................................................... 64
1.3 Compactness ................................................................................ 85
Exercise 1.3: Part A ..................................................... 90
Exercise 1.3: Part B ..................................................... 94
1.4 Compactness in the Euclidean Space Rn ...................................................... 108
Exercise 1.4: Part A ................................................... 115
Exercise 1.4: Part B ................................................... 118

2. Limits and Continuity 129
2.1 Convergence in a Metric Space..................................................129
Exercise 2.1: Part A ................................................... 134
Exercise 2.1: Part B ................................................... 138
2.2 Complete Metric Spaces.............................................................145
Exercise 2.2: Part A ................................................... 150
Exercise 2.2: Part B ................................................... 155
2.3 Continuity and Homeomorphism ...............................................172
Exercise 2.3: Part A ................................................... 193
Exercise 2.3: Part B ................................................... 204

3. Connectedness 233
3.1 Connectedness.............................................................................233
Exercise 3.1: Part A ................................................... 245
Exercise 3.1: Part B ................................................... 249


Xv

,Xvi Metric Space Topology: Examples, Exercises and Solutions


3.2 Path-connectedness .................................................................... 266
Exercise 3.2: Part A.................................................... 278
Exercise 3.2: Part B.................................................... 281

4. Uniform Continuity 295
4.1 Uniform Continuity .................................................................... 296
Exercise 4.1: Part A.................................................... 301
Exercise 4.1: Part B.................................................... 309
4.2 Contraction and Beach’s Fixed Point Theorem...................... 322
Exercise 4.2: Part A.................................................... 330
Exercise 4.2: Part B.................................................... 332

5. Uniform Convergence 349
5.1 Sequence of Functions ................................................................ 349
Exercise 5.1: Part A.................................................... 368
Exercise 5.1: Part B.................................................... 377
5.2 Series of Functions ..................................................................... 389
Exercise 5.2: Part A.................................................... 395
Exercise 5.2: Part B.................................................... 401

Bibliography 421

Index 423

, Chapter 1

Metric Spaces

In this chapter, the basic concept of metric spaces will be introduced.
Naively, they are simply nonempty sets equipped with a structure
called metric. For the less matured students, at the beginning, this
structure may appear to be a bit abstract and difficult to master.
But in practice, this seemingly new concept is nothing more than
a tiny little abstractization of the familiar space Rn and so all one
needs to do is that whenever one needs to work on a problem in an
abstract metric space, one first looks at the problem on Rn, then one
would be able to see the clue of how to proceed in the general case.
In fact, in general, the most effective way to master a new concept
in any branch of mathematics is to keep in mind a couple of typical
concrete examples and think of these examples all the time. It is just
that easy.


1.1 Definitions and Examples
Definition 1.1.1. Let X be a nonempty set. A metric ton X is a
real-valued function
D: X × X → R
Satisfying
(M1) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y,
(M2) (Symmetry) d(x, y) = d(y, x),
(M3) (Triangle inequality) d (x, y) ≤ d(x, z) + d (z, y)
For all x, y, z ∈ X. Given x, y ∈ X, d(x, y) is also known as the
distance between x and y with respect to do. The pair (X, d) is
called a metric space and elements in X are referred to as points in
X. For the sake of convenience, in case there is a clearly defined
metric d on X, we shall simply call X a metric space.


1

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
LECTJULIESOLUTIONS Havard School
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
14
Lid sinds
1 jaar
Aantal volgers
1
Documenten
443
Laatst verkocht
2 dagen geleden
JULIESOLUTIONS ALL STUDY GUIDES

You will get solutions to all subjects in both assignments and major exams. Contact me for any assisstance. Good luck! Simple well-researched education material for you. Expertise in Nursing, Mathematics, Psychology, Biology etc,. My Work contains the latest, updated Exam Solutions, Study Guides, Notes 100% verified Guarantee .

5,0

3 beoordelingen

5
3
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen