100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

Solutions Manual Simulation and the Monte Carlo Method 2nd Edition By Dirk P. Kroese, Thomas Taimre

Beoordeling
-
Verkocht
-
Pagina's
179
Cijfer
A+
Geüpload op
01-01-2026
Geschreven in
2025/2026

This is a complete solutions manual PDF for Simulation and the Monte Carlo Method 2nd Edition By Dirk P. Kroese, Thomas Taimre. It provides detailed, step-by-step answers to all exercises and problems.

Instelling
Simulation
Vak
Simulation











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Simulation
Vak
Simulation

Documentinformatie

Geüpload op
1 januari 2026
Aantal pagina's
179
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Solutions Manual
Simulation and the Monte Carlo Method 2nd Edition
By
Dirk P. Kroese,
Thomas Taimre,
Zdravko I. Botev,
Rueven Y. Rubinstein

( All Chapters Included - 100% Verified Solutions )




1

,CHAPTER 1




PRELIMINARIES




Probability Theory

1.1 Using the properties of the probability measure in Definition 1.1.1:
A probability P is a rule that assigns a number 0 < Ψ(Α) < 1 to each event A, such
that Ρ(Ω) = l t and such that for any sequence Ai, A2,... of disjoint events




prove the following results.
(a) F(Ac) = l-F(A).
(b) Ψ(Α U B) = P(i4) + P(JB) - P(i4 Π B).
1.2 Prove the product rule (1.4):
For any sequence of events A\, A2,..., An,

Ψ(Αι · · · Λ„) = ?(Αι) Ψ(Α2 | Αι) Ψ(Α3 | Λι A7) · · · Ρ(Λη \AX · · · Λ η -ι) ,
using the abbreviation Λ1Λ2 · · - Ak = Ai Π Λ2 Π · · · O Λ*.
for the case of three events.
Solutions Manual for SMCM, 2nd Edition. By D.P. Kroese, T. Taimre, Z.I. Botev, and R.Y. Rubinstein 1
Copyright © 2007 John Wiley & Sons, Inc.


2

,2 PRELIMINARIES



1.3 We draw three balls consecutively from a bowl containing exactly five white and five
black balls, without putting them back. What is the probability that all drawn balls will be
black?
1.4 Consider the random experiment where we toss a biased coin until heads comes up.
Suppose the probability of heads on any one toss is p. Let X be the number of tosses
required. Show that X ~ G(p).
1.5 In a room with many people, we ask each person his/her birthday, for example, May
5. Let N be the number of people queried until we get a "duplicate" birthday.
(a) Calculate F(N > π), π = 0 , 1 , 2 , . . . .
(b) For which n do we have F(N ζ η) 3* 1/2?
(c) Use a computer to calculate E[N].
1.6 Let X and Y be independent standard normal random variables, and let U and V be
random variables that are derived from X and Y via the linear transformation

/£7\ _ /sin a —cosa\ fX\
\VJ ~~ \cosa sin a ) \Y)

(a) Derive the joint pdf of U and V.
(b) Show that U and V are independent and standard normally distributed.
1.7 Let X ~ Εχρ(λ). Show that the memoryless property holds:

¥{X>t + s\X>t) = ¥(X>s) foralls,t>0.



1.8 Let X\, Xi, X$ be independent Bernoulli random variables with success probabilities
1/2,1/3, and 1/4, respectively. Give their conditional joint pdf, given that X\ +X2 +Xz =
2.
1.9 Verify the expectations and variances in Table 1.1 below.


Table 1.1 Expectations and variances for some well-known distributions.


Dist. E[X] Var(X) Dist. E[X] Var(X)

Βίη(π,ρ) ηρ np(l - p) Gamma(α, λ) - ^

Χ
-ψ- Ν(μ,σ 2 ) μ σ*

Ροί(λ) λ X Beta(a,/3) ^ (o+wt+o+ti

i^f- Weib(a,A) m£l Sßfsl - (Eü^)2

Εχρ(λ) I




3

, 3

1.10 Let X and Y have joint density / given by
f(x,y) = cxy, Οζρζχ, 0 < ar < 1 .
(a) Determine the normalization constant c.
(b) Determine Ψ(Χ 4- 2 y < 1).
1.11 Let X ~ Εχρ(λ) and Y ~ Exp(/z) be independent. Show that
(a) min(X,y)~Exp(A + M),
(b) ¥(X < Y | min(X, y ) ) = λ + μ'

1.12 Verify the properties of variance and covariance in Table 1.2 below.


Table 1.2 Properties of variance and covariance.


1 Var(X) = E[X 2 ] - (E[X])2 ¡
2
2 Var(aX 4- b) = a Var(X)
3Cov(x, y) = E[xy] - E[X) E[y] 1
4 cov(x,y) = cov(y,x)
5 Cov(aX + bY, Z) = a Cov(*, Z) 4- 6 Cov(y, Z)
6 Cov(X,X) = Var(X)
7 Var(X 4- Y) = Var(X) 4- Var(y) + 2Cov(X, y )
8 X and y indep. = * Cov(X, y ) = 0



1.13 Show that the correlation coefficient always lies between - 1 and 1. (Hint: use the
fact that the variance of aX -f Y is always nonnegative, for any a.)
1.14 Consider Examples 1.1-1.2. Define X as the function that assigns the number
Xi H l· x n to each outcome ω — {x\,..., xn). The event that there are exactly k heads
in n throws can be written as
{ω € Ω : Χ(ω) = fc} .
If we abbreviate this to {X = fc} and further abbreviate ¥({X = k}) to F(X = /:), then
we obtain exactly (1.7). Verify that one can always view random variables in this way,
that is, as real-valued functions on Ω, and that probabilities such as F(X < x) should be
interpreted as Ψ{{ω € Ω : Χ(ω) ^ x}).
1.15 Show that

Var x Var 2 Cov X
Σ
t=l
* = Σ
i=l
(^)+ Σ ( * - Ö)
i<j


1.16 Let Σ be the covariance matrix of a random column vector X. Write Y = X — μ,
where μ is the expectation vector of X. Hence, Σ = E [ Y Y r ] . Show that Σ is positive
semidefinite. That is, for any vector u, we have u r E u ^ 0.




4
€25,36
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
reckmila

Maak kennis met de verkoper

Seller avatar
reckmila Massachusetts Institute Of Technology
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
6
Lid sinds
4 maanden
Aantal volgers
0
Documenten
87
Laatst verkocht
9 uur geleden
Miss Fullmark

High-quality solutions manuals crafted to help you master every chapter and score full marks.

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen