Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

Applied Linear Algebra – Complete Solutions Manual by Peter J. Olver & Chehrzad Shakiban | Step-by-Step Exercise Solutions (All Chapters Included)

Note
-
Vendu
-
Pages
205
Qualité
A+
Publié le
06-12-2025
Écrit en
2025/2026

Master Applied Linear Algebra with this complete Solutions Manual by Peter J. Olver & Chehrzad Shakiban. Featuring step-by-step solutions for all exercises in every chapter, this manual is ideal for students and professionals seeking to strengthen their understanding of linear algebra concepts and excel in coursework, assignments, and exams. Key Features: Fully worked solutions for all chapters and exercises Step-by-step explanations for clarity and comprehension Perfect for homework help, exam prep, and concept mastery Ideal for mathematics, engineering, computer science, and applied math students From vector spaces and linear transformations to eigenvalues, matrices, and applications, this solutions manual is the ultimate study companion for mastering linear algebra effectively.

Montrer plus Lire moins
Établissement
Algebra
Cours
Algebra











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Algebra
Cours
Algebra

Infos sur le Document

Publié le
6 décembre 2025
Nombre de pages
205
Écrit en
2025/2026
Type
Examen
Contenu
Questions et réponses

Sujets

Aperçu du contenu

SOLUTION MANUAL
All Chapters Included




for

Applied Linear
Algebra
by

Peter J. Olver
and Chehrzad Shakiban
Second Edition

Undergraduate Texts in

Mathematics

,Table of Contents

Chapter 1. Linear Algebraic Systems ................................................... 1

Chapter 2. Vector Spaces and Bases ..................................................... 22

Chapter 3. Inner Products and Norms ................................................. 40

Chapter 4. Orthogonality ........................................................................ 59

Chapter 5. Minimization and Least Squares ..................................... 77

Chapter 6. Equilibrium ......................................................................... 94

Chapter 7. Linearity ............................................................................ 105

Chapter 8. Eigenvalues and Singular Values ................................... 124

Chapter 9. Iteration .............................................................................150

Chapter 10. Dynamics ........................................................................... 176

, Instructors’ Solutions Manual for
Chapter 1: Linear Algebraic Systems
Note: Solutions marked with a ⋆ do not appear in the Students’ Solutions Manual.




1.1.1. (b) Reduce the system to 6 u + v = 5, — 5 v = 5
; then use Back Substitution to solve
for u = 1, v = —1. 2 2


(c) Reduce the system to p + q — r = 0, —3 q + 5 r = 3, — r = 6; then solve for
p = 5, q = —11, r = —6.
(d) Reduce the system to 2 u — v + 2 w = 2, — 32 v + 4 w = 2, — w = 0; then solve for
u = 1 , v = — 4 , w = 0.
3 3
⋆ (e) Reduce the system to 5 x1 + 3 x2 — x3 = 9, 1 x2 — 2 x3 = 2 , 2 x3 = —2; then solve for
5 5 5
x1 = 4, x2 = —4, x3 = —1.
(f ) Reduce the system to x + z — 2 w = — 3, — y + 3 w = 1, — 4 z — 16w = — 4, 6w = 6; then
solve for x = 2, y = 2, z = —3, w = 1.

⋆ 1.1.2. Plugging in the values of x, y and z gives a + 2 b — c = 3, a — 2 — c = 1, 1 + 2 b + c = 2.
Solving this system yields a = 4, b = 0, and c = 1.

♥ 1.1.3. (a) With Forward Substitution, we just start with the top equation and work down.
Thus 2 x = —6 so x = —3. Plugging this into the second equation gives 12 + 3y = 3, and so
y = —3. Plugging the values of x and y in the third equation yields —3 + 4(—3) — z = 7, and
so z = —22.
⋆ (c) Start with the last equation and, assuming the coefficient of the last variable is /= 0, use
the operation to eliminate the last variable in all the preceding equations. Then, again as-
suming the coefficient of the next-to-last variable is non-zero, eliminate it from all but the
last two equations, and so on.
⋆ (d) For the systems in Exercise 1.1.1, the method works in all cases except (c) and (f ). Solv-
ing the reduced system by Forward Substitution reproduces the same solution (as it must):
(a) The system reduces to 3 x = 17 , x + 2 y = 3. (b) The reduced system is 15 u = 15 ,
2 2 2 2
3 u — 2 v = 5. (d) Reduce the system to2 3 u = 21 , 72u — v = 52, 3 u — 2 w = —1. (f ) Doesn’t
work since, after the first reduction, z doesn’t occur in the next to last equation.


√ ,
0
1.2.1. (a) 3 × 4, (b) 7, (c) 6, (d) ( —2 0 1 2 ), (e) . 2 ..
,
—6
√ , √ ,

.1 2 3
. 1 2 3
! 1 2 3 4, 1
. .
1.2.2. Examples: (a) .4 5 6.
,, ⋆ (b) 1 4 5
, (c) .4 5 6 7 .,, (e) . 2 ,..
7 8 9 7 8 9 3 3
! ! !
6 1 u 5
1.2.4. (b) A = , x= , b= ;
3 —2 v 5




1 ⃝c 2019 Peter J. Olver and Chehrzad Shakiban

, Chapter 1: Instructors’ Solutions Manual 3

, √ , √ ,
⋆ .
1 1 —1 p 0
(c) A = . 2 —1 3,
.
. , x = . q. , b = . 3. ;
, ,
—1 —1 0 r 6
√ , √ , √ ,
2 —1 2 u 2
—1 —1
.. .
. .
(d) A = 3,, x= v , , b = 1.
. .
,;
√ 3 0 ,—2 w 1
5 3 —1 √ , √ ,
x1 9

(e) A = ..
3 2 —1 . .
,, x=
. x . , b=.
2 , 5 .,;
1 1 2 x3 —1
√1 0 1 —2 , √ ,
x

—3 ,
. 2 —1 2 —1. . y. . —5.
(f ) A = . ., x =
. , b= . . .
.
0 —6 —4 2.
,
.
z, 2,
1 3 2 —1 w 1

1.2.5. (b) u + w = —1, u + v = —1, v + w = 2. The solution is u = —2, v = 1, w = 1.
(c) 3 x1 — x3 = 1, —2 x1 — x2 = 0, x1 + x2 — 3 x3 = 1.
The solution is x1 = 15, x2 = — 25, x3 = — 25.

(d) x + y — z — w = 0, —x + z + 2 w = 4, x — y + z = 1, 2 y — z + w = 5.
The solution is x = 2, y = 1, z = 0, w = 3.


√ , √
1 0 0 0 0 0 0 0 0 0,
. . .
0 1 0 0 0 0 0 0 0 0.
1.2.6. (a) I = . 0 0 1 0 0 ., O= 0 0 0 0 0 ..
. . .
. .
.
0 0 0 1 0, 0 0 0 0 0,
0 0 0 0 1 0 0 0 0 0

(b) I + O = I , I O = O I = O. No, it does not.
3 6 0!
1.2.7. (b) undefined, (c) , ⋆ (e) undefined,
—1 4 2√ ,

1 11 9, 9 —2 14
.
(f )
.
.3
.
—12 —12 .
,,
⋆ (h) . —8 6 —17 .
,.
.

7 8 8 12 —3 28

1.2.9. 1, 6, 11, 16.

√ , √2 0 0 0,
1 0 0
⋆ (b)
.
0 —2 0 0.
1.2.10. (a) 0 0 0 ., , . ..
0 0 3 0,
.
0 0 —1
0 0 0 —3

1.2.11. (a) True, ⋆ (b) true.
! !
x ! ax by ay
⋆ ♥ 1.2.12. (a) Let A = y
. Then AD = = ax = DA, so if a /= b these
z w az bw bz bw
!
a 0
are equal if and only if y = z = 0. (b) Every 2 × 2 matrix commutes with 0 a = a I.




⃝ c 2019 Peter J. Olver and Chehrzad Shakiban
16,34 €
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
ScholarsCorner Princeton University
S'abonner Vous devez être connecté afin de pouvoir suivre les étudiants ou les formations
Vendu
51
Membre depuis
11 mois
Nombre de followers
11
Documents
1784
Dernière vente
2 jours de cela
Scholar's Corner - Your go-to hub for academic excellence.

Welcome to Scholar's Corners Your trusted source for high-quality, -based test banks, flashcards, and study bundles designed to help you excel in Nursing, NCLEX, Medicine, Business, and Law. We write accurate, exam-focused materials sourced from top Global. colleges, ensuring you study efficiently and pass with confidence. ✅ NCLEX & Nursing Exam Prep ✅ Medical & Business Study Guides ✅ Flashcards for Fast Revision ✅ Verified Answers with Rationales ✅ Easy-to-use, downloadable files

Lire la suite Lire moins
4,2

10 revues

5
7
4
0
3
2
2
0
1
1

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions