Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

Artificial Intelligence: A Modern Approach (AIMA) – 4th Edition, Norvig & Russell – Solutions & Instructor Manual (Chapters 1–28) – Complete Answer Explanations and Teaching Notes

Note
-
Vendu
-
Pages
930
Qualité
A+
Publié le
20-11-2025
Écrit en
2025/2026

This document contains detailed solutions and instructor guidance for all major topics covered in Artificial Intelligence: A Modern Approach (4th Edition) by Peter Norvig and Stuart Russell. It includes worked-out answers, explanations, and pedagogical notes for Chapters 1–28, covering foundational AI concepts, algorithms, and applications. The material is structured for educators and students who need comprehensive clarification and full solution steps. It aligns with standard coursework for university-level AI classes and supports exam preparation and assignment design.

Montrer plus Lire moins
Établissement
Artificial Intelligence: A Modern Approach
Cours
Artificial Intelligence: A Modern Approach











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Artificial Intelligence: A Modern Approach
Cours
Artificial Intelligence: A Modern Approach

Infos sur le Document

Publié le
20 novembre 2025
Nombre de pages
930
Écrit en
2025/2026
Type
Examen
Contenu
Questions et réponses

Sujets

Aperçu du contenu

SOLUTIONS & INSTRUCTOR MANUAL
Artificial Intelligence: A Modern Approach, 4th Edition
by Peter Norvig and Stuart Russell, Chapters 1 – 28

,Artificial Intelligence
1 Introduction ...
2 Intelligent Agents ...
II Problem-solving
3 Solving Problems by Searching ...
4 Search in Complex Environments ...
5 Adversarial Search and Games ...
6 Constraint Satisfaction Problems ...
III Knowledge, reasoning, and planning
7 Logical Agents ...
8 First-Order Logic ...
9 Inference in First-Order Logic ...
10 Knowledge Representation ...
11 Automated Planning ...
IV Uncertain knowledge and reasoning
12 Quantifying Uncertainty ...
13 Probabilistic Reasoning ...
14 Probabilistic Reasoning over Time ...
15 Probabilistic Programming ...
16 Making Simple Decisions ...
17 Making Complex Decisions ...
18 Multiagent Decision Making ...
V Machine Learning

, 19 Learning from Examples ...
20 Learning Probabilistic Models ...
21 Deep Learning ...
22 Reinforcement Learning ...
VI Communicating, perceiving, and acting
23 Natural Language Processing ...
24 Deep Learning for Natural Language Processing ...
25 Computer Vision ...
26 Robotics ...
VII Conclusions
27 Philosophy, Ethics, and Safety of AI ...
28 The Future of AI

, EXERCISES 1
INTRODUCTION
Note that for many of the questions in this chapter, we give references where answers can be
found rather than writing them out—the full answers would be far too long.

1.1 What Is AI?

Exercise 1.1.#DEFA
Define in your own words: (a) intelligence, (b) artificial intelligence, (c) agent, (d) ra-
tionality, (e) logical reasoning.


a. Dictionary definitions of intelligence talk about “the capacity to acquire and apply
knowledge” or “the faculty of thought and reason” or “the ability to comprehend and
profit from experience.” These are all reasonable answers, but if we want something
quantifiable we would use something like “the ability to act successfully across a wide
range of objectives in complex environments.”
b. We define artificial intelligence as the study and construction of agent programs that
perform well in a given class of environments, for a given agent architecture; they do
the right thing. An important part of that is dealing with the uncertainty of what the
current state is, what the outcome of possible actions might be, and what is it that we
really desire.
c. We define an agent as an entity that takes action in response to percepts from an envi-
ronment.
d. We define rationality as the property of a system which does the “right thing” given
what it knows. See Section 2.2 for a more complete discussion. The basic concept is
perfect rationality; Section ?? describes the impossibility of achieving perfect rational-
ity and proposes an alternative definition.
e. We define logical reasoning as the a process of deriving new sentences from old, such
that the new sentences are necessarily true if the old ones are true. (Notice that does not
refer to any specific syntax or formal language, but it does require a well-defined notion
of truth.)


Exercise 1.1.#TURI
Read Turing’s original paper on AI (Turing, 1950). In the paper, he discusses several
objections to his proposed enterprise and his test for intelligence. Which objections still carry


© 2023 Pearson Education, Hoboken, NJ. All rights reserved.
15,71 €
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
ScholarSource2020
5,0
(1)

Faites connaissance avec le vendeur

Seller avatar
ScholarSource2020 Chamberlain School Of Nursing
S'abonner Vous devez être connecté afin de pouvoir suivre les étudiants ou les formations
Vendu
5
Membre depuis
4 mois
Nombre de followers
1
Documents
606
Dernière vente
1 mois de cela

5,0

1 revues

5
1
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions