d d d
SOLUTIONS MANUAL
d
, CONTENTS
Chapter Page
2.................................................................................................................................. 1
4 9
5 25
6 41
8................................................................................................................................ 51
9................................................................................................................................ 61
10 ............................................................................................................................... 65
11 ............................................................................................................................... 79
12 ............................................................................................................................... 91
@
@sseeisism
micicisisoolalatitoionn
, Chapter2 d
2.1 a. Spring constant, k: The change in the force per unit length change of the spring.
d d d d d d d d d d d d d d d
b. Coefficient of subgrade reaction, k: d d d d
k
Spring constant divided by the foundation contact area,
d d d d d d d
k = d d
A
c. Undamped natural circular frequency: d d d n = d rad/s
W
where m = mass = d d d d d
g
d. Undamped natural frequency: fn = (in Hz)
2
d d d d
m
d
Note: Circular frequencydefinestherateofoscillationintermofradians per unit time;
d d d d d d d d d d d d d d
2π radians being equal to one complete cycle of rotation.
d d d d d d d d d d
e. Period,T: Thetimerequiredfor the motiontobeginrepeating itself.
d d d d d d d d d d d
n
f. Resonance: Resonance occurs when d d d d
d
=1 d
g. Critical damping coefficient: cc =2 km
d d
d
d
W
where k = spring constant; m = mass =
d d d d d d d d d
g
h. c c
Damping ratio: D = =
d
d d d d
cc 2
km
where c = viscous damping coefficient; cc = critical damping coefficient
d d d d d d d d d d
i. Damped natural frequency: d d
d =n 1− D2
d d d d
fd = 1− D2 fn
d
d d
@ 1
@sseeisism
m icicisisoolalatitoionn
© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
d d d d d d d d d d d d d d d d d d d d d d
, 2.2 Weightofmachine+ foundation,W=400 kN d d d d d d d d
Spring constant, k = 100,000 kN/m
d d d d d d
W 400 kN
= = 40.77
d d
Massofthemachine +foundation,m= d d d d d d d
d d
g 9.81 m s2d d
Natural frequency of undamped free vibration is [Eq. (2.19)]
d d d d d d d d
1 k
fn = = = 7.88 Hz
2 2
d d d
m 40.77
d
1 1
= = 0.127 s
d d d
From Eq. (2.18), T = d d d d
d d
fn d 7.88
2.3 Weightofmachine+ foundation,W=400 kN d d d d d d d d
Spring constant, k = 100,000 kN/m
d d d d d d
Static deflection of foundation is [Eq. (2.2)]
d d d d d d
z = 400
d
= = 410−3m = 4 mm
W
d d d d d d
d
100,000
s
k
2.4 External force to which the foundation is subjected, Q = 35.6sint kN
d d d d d d d d d d d
f = 13.33 Hz
d d d
Weightofthemachine +foundation,W= 178kN d d d d d d d d d
Spring constant, k = 70,000 kN/m
d d d d d d
For thisfoundation, lettimet=0, z = z0 =0, zɺ=v0 = 0
d d d d d d d d d d
d
d d d d
d
d
W 178 kN
a. Mass of the machine + foundation, m= = = 18.145
d d
d d d d d d d d d
g 9.81 m s2
d d
k
n = d = = 62.11 rad/s d d
m
2 2
T= = = 0.101 s
d d d d
d d d d d
n 62.11
b. The frequencyof loading, f = 13.33 Hz
d d d d d d d
= 2f = 2(13.33) = 83.75rad/s
d d d d d d d d d
@ 2
@sseeisism
m icicisisoolalatitoionn
© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
d d d d d d d d d d d d d d d d d d d d d d