k k k
SOLUTIONMANUAL
k
, Chapter1 k
Problems 1-1 through 1-4 are for student research.
k k k k k k k
1-5 Impending motion to left k k k
E
1 1
f f
A B
G
Fcr F θ
D C k cr k k
Facc
Consider force F at G, reactions at B and D. Extend lines of action for fully-developed fric- tion
k k k k k k k k k k k k k k k k k
DE and BE to find the point of concurrency at E for impending motion to the left. The critical
k k k k k k k k k k k k k k k k k k k
angle is θcr. Resolve force F into components Facc and Fcr. Facc is related to mass and acceleration.
k k k k k k k k k k k k k k k k k k
Pin accelerates to left for any angle 0 < θ < θcr. When θ > θcr, no magnitude of F will move the
k k k k k k k k k k k k k k k k k k k k k k k
pin.
k
Impending motion to right k k k
∙
1 1
f f
A B
G
d
cr θ'
D C cr
acc
Consider force F ′ at G, reactions at A and C. Extend lines of action for fully-developed fric- tion
k k k k k k k k k k k k k k k k k k
AE ′ and CE ′ to find the point of concurrency at E ′ for impending motion to the left. The critical
k
k
k
k
k k k k k k k k k k k k k k k k
angle is θc′r. Resolve force F ′ into components Fa′cc and Fc′r. Fa′cc is related to mass and
k k k k k k k k k k
k
k k
k
k k k k
acceleration. Pin accelerates to right for any angle 0 < θ′ < θc′r. When θ′ > θc′r, no mag-
k k k k k k k k k k k k k k k k k k k k k
nitude of F′ will move the pin.
k k k k k k k
The intent of the question is to get the student to draw and understand the free body in order to
k k k k k k k k k k k k k k k k k k k
recognize what it teaches. The graphic approach accomplishes this quickly. It is im- portant to
k k k k k k k k k k k k k k k
point out that this understanding enables a mathematical model to be constructed, and that there
k k k k k k k k k k k k k k k
are two of them.
k k k k
This is the simplest problem in mechanical engineering. Using it is a good way to begin a
k k k k k k k k k k k k k k k k
course.
k
What is the role of pin diameter d? k k k k k k k
Yes, changing the sense of F changes the response.
k k k k k k k k
,2 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
k k k k k k k k k k
1-6
Σ k
(a) y Fy = −F − f N cosθ + N sinθ = 0 k k k k k k k k k k k k k (1)
F Σ T
Fx = f N sinθ + N cosθ − =0
r
k k k k k k k k k k k
T
θ r x F = N(sinθ − f cosθ) Ans. k k k k k k k k k
T = Nr ( f sinθ + cosθ) k k k k k k k k k k
N
fN k
Combining
1 + f tanθ
T = Fr = KFr Ans. (2)
k k k k
tanθ − f
k k
k k k
(b) If T → ∞ detent self-locking
k k k k k tanθ − f = 0 k ∴ θcr = tan−1 f k k Ans.
(Friction is fully developed.) k k k
Check: If F = 10 lbf,
k k k θ = 45◦, r = 2in f = 0.20,
k k k k k k k
10
N= = 17.68lbf
−0.20cos45◦ + sin45◦
k k k k
k k
k k k k
T
= 17.28(0.20sin45◦ + cos45◦) = 15lbf
r
k k k k k k k k k
k
fN = 0.20(17.28) = 3.54lbf
k k k k k k
θcr = tan−1 f = tan−1(0.20) = 11.31◦
k k k k k k k
11.31° < θ <90° k k k k
1-7
(a) F = F0 + k(0) = F0 T1
k k k k k k k
= F0r k Ans.
k
(b) When teeth are about to clear k k k k k
F = F0 + kx2k k k k
From Prob. 1-6 k k
f tanθ + 1
T2 = Fr
k k k k k
tan θ − f
k
k k k k
(F0 + kx2)( f tanθ + 1)
T2 = r
k k k k k k k
Ans.
k
tanθ − f
k
k k k
1-8
Given, F = 10 + 2.5x lbf, r = 2in, h = 0.2in, θ = 60◦, f = 0.25, xi = 0, xf = 0.2
k k k k k k k k k k k k k k k k k k k k k k k k k k k
Fi = 10lbf;Ff = 10+ 2.5(0.2) = 10.5lbf
k k k k k k k k k k k Ans.
, Chapter 1 k 3
From Eq. (1) of Prob. 1-6
F
k k k k k
N=
− f cosθ + sinθ
k
k k k
10
Ni = = 13.49lbf Ans.
−0.25cos60◦ + sin60◦
k k k
k
k k
k k k k
10.5
Nf = 13.49 = 14.17 lbf Ans.
10
k k k k k k
k
From Eq. (2) of Prob. 1-6
k k k k k
1 + f tanθ 1 + 0.25 tan60◦
K= = = 0.967 Ans.
k k k k k k k k
tanθ − f tan60◦ − 0.25
k k k k
k
k
Ti = 0.967(10)(2) = 19.33 lbf · in
k k k k k k k
Tf = 0.967(10.5)(2) = 20.31 lbf · in
k k k k k k k
1-9
(a) Point vehicles k
v
x
cars v 42.1v − v2 k k
Q= = =
hour x 0.324
k k k
k k
Seek stationary point maximum
k k k
dQ 42.1 − 2v
= 0= ∴ v* = 21.05mph
k k k k
k k k k k k k
dv 0.324
42.1(21.05) — 21.052
Q* = = 1367.6cars/h k
Ans.
0.324
k k
(b) v
l x l
2 2
−1
k
k v k k
l 0.324 k k
+
k
Q= = v(42.1) − v2 v
k
x +l
k k
k
k k
k k k
Maximize Q with l = 10/5280 mi k k k k k k
v Q
22.18 1221.431
22.19 1221.433
22.20 1221.435 ←
22.21 1221.435
22.22 1221.434
1368 − 1221
% loss of throughput = 12% Ans.
k k
k k k k
1221