Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

A First Course in Differential Geometry (2019) – Woodward – Solutions Manual PDF

Note
-
Vendu
-
Pages
47
Qualité
A+
Publié le
01-10-2025
Écrit en
2025/2026

INSTANT PDF DOWNLOAD. Complete solutions to exercises from A First Course in Differential Geometry: Surfaces in Euclidean Space by L. M. Woodward and J. Bolton. Covers all 9 chapters with step-by-step worked-out solutions, ideal for mastering the fundamentals of differential geometry and preparing for problem sets, assignments, and exams. differential geometry solutions manual, first course in differential geometry answers, woodward bolton geometry pdf solutions, surfaces in euclidean space problems solved, differential geometry chapter solutions, geometry exam prep pdf, solutions to geometry exercises, euclidean space geometry textbook answers, applied mathematics geometry problems solved, geometry assignments solved pdf, differential geometry student solutions manual, geometry course companion pdf, first course geometry practice solutions, geometry problems with answers pdf, advanced differential geometry solutions, mathematics geometry solved exercises, geometry problems step by step solutions, geometry textbook solutions pdf, woodward bolton differential geometry pdf, geometry study material with solutions

Montrer plus Lire moins
Établissement
Aerospace
Cours
Aerospace











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Aerospace
Cours
Aerospace

Infos sur le Document

Publié le
1 octobre 2025
Nombre de pages
47
Écrit en
2025/2026
Type
Examen
Contenu
Questions et réponses

Sujets

Aperçu du contenu

ALL 9 CHAPTERS COVERED




Solutions to exercises

, 1

A FIRST COURSE IN DIFFERENTIAL GEOMETRY
Woodward and Bolton
Solutions to exercises
Chapter 1

1.1. A sketch of the astroid is given in Figure 1(a). It is clear that all
points in the image of α satisfy the equation of the astroid. Conversely, if
x2/3 + y 2/3 = 1, then there exists u ∈ R such that (x1/3 , y 1/3 ) = (cos u, sin u).
Thus every point of the astroid is in the image of α.
Trigonometric identities may be used to show that α′ = (3/2) sin 2u(− cos u, sin u),
which is zero only when u is an integer multiple of π/2. The corresponding points
of the astroid are the cusps in Figure 1(a).
The required length is

3 π/2 3
Z
sin 2u du = .
2 0 2




(a) Astroid (b) An epicycloid

Figure 1


1.2. A sketch of the trace of an epicycloid is given in Figure 1(b). Trigono-
metric identities may be used to show that

α′ = 4r sin(u/2) sin(3u/2), cos(3u/2) .
R 2π
So, for 0 ≤ u ≤ 2π, |α′ | = 4r sin(u/2), and required length is 4r 0
sin(u/2)du =
16r.

1.3. When r = 1, a calculation shows that α′ = tanh u sech u(sinh u, −1),
so that, for u ≥ 0, t = sech u(sinh u, −1). It follows that α + t = (u, 0). A
sketch of the trace of a tractrix is given in Figure 2(a).
2 2
1.4. Here, |α′ | = (1 + g ′ )1/2 and t = (1 + g ′ )−1/2 (1, g ′ ). Hence n =
2 2
(1 + g ′ )−1/2 (−g ′ , 1). A calculation shows that t′ = g ′′ (1 + g ′ )−3/2 (−g ′ , 1), so
that
dt 1 g ′′
= ′ t′ = n.
ds |α | (1 + g ′ 2 )3/2

,2 SOLUTIONS TO EXERCISES




Figure 2: (a) shows a tractrix and (b) shows three catenaries


2
Hence κ = g ′′ (1 + g ′ )−3/2 .
Taking x(u) = u, y(u) = g(u) in the formula given in Exercise 1.8 gives the
same formula for κ.

1.5. Use the method of Example 2 of §1.3. For u ≥ 0, |α′ | = tanh u and
t = (tanh u, −sech u). It follows that dt/ds = (|α′ |)−1 t′ = n/ sinh u. Hence
κ = cosech u.

1.6. EITHER: use Exercise 1.4 to show that the curvature of the catenary
α(u) = (u, cosh u) is given by κ = sech2 u,
OR: use the method of Example 2 of §1.3, and proceed as follows:-
α′ = (1, sinh u), so that |α′ | = cosh u and t = (sech u, tanh u). Hence n =
(−tanh u, sech u), and

dt 1 1 1
= ′ t′ = 2 (−tanh u, sech u) = n.
ds |α | cosh u cosh2 u

Hence κ = sech2 u. A sketch of the traces of three catenaries is given in Figure
2(b).

1.7. Differentiating with respect to u, we see that, using Serret-Frenet,

αℓ ′ = α′ + ℓn′ = |α′ |(t − κℓt) = |α′ |(1 − κℓ)t .

It follows that |αℓ ′ | = |α′ | |1 − κℓ| and tℓ = ǫt, where ǫ = (1 − κℓ)/|1 − κℓ|.
Hence nℓ = ǫn, so, if sℓ denotes arc length along αℓ , we have

dtℓ 1 ǫ
= ′ t′ = ′ t′ .
dsℓ |α | |1 − κℓ| ℓ |α | |1 − κℓ|

Using Serret-Frenet, t′ = |α′ |κn = |α′ |κǫnℓ , from which the result follows.
2 2
1.8. Since α′ = (x′ , y ′ ), we have that |α′ | = (x′ + y ′ )1/2 . Hence t =
2 2 2 2
(x , y ′ )/(x′ + y ′ )1/2 and n = (−y ′ , x′ )/(x′ + y ′ )1/2 . Hence




α′′ α′ (x′ x′′ + y ′ y ′′ )
t′ = 2 1/2 − ,
(x′ 2 +y )
′ (x′ 2 + y ′ 2 )3/2

, A FIRST COURSE IN DIFFERENTIAL GEOMETRY 3

and a short calculation shows that
dt 1 
′ ′′ ′ ′ ′′ ′ ′ ′′ ′′ ′

= ′2 2 y (x y − x y ), x (x y − x y )
ds (x + y ′ )2
x′ y ′′ − x′′ y ′
= ′2 n,
(x + y ′ 2 )3/2
and the result follows.

1.9. (i) Let sα be arc length along α measured from u = 0. Since α′ =
(1, sinh u) we see that dsα /du = |α′ | = cosh u. Hence sα (u) = sinh u and
tα = (sech u, tanh u). The result follows from formula (1.9) for the involute.
(ii) The evolute of α is given by
1
β =α+ nα .
κα
Here, we have (from Exercise 1.6) that κα = sech2 u and nα = (−tanh u, sech u).
A direct substitution gives the result.
A short calculation shows that β ′ = 0 if and only if u = 0, so this gives the
only singular point of β (where the curve β has a cusp). A sketch of the traces
of α and β is given in Figure 3.




Figure 3: A catenary and its evolute


1.10. Let sα denote arc length along α starting at u = u0 . Then, using
(1.9) and the notation used there, we see that

β ′ = α′ − sα ′ tα − sα tα ′ = −sα tα ′ .

It follows that β ′ = −sα |α′ |κα nα , so the only singular point of β is when
sα = 0, that is at u = u0 .

1.11. For ease, assume that κα > 0, and restrict attention to u0 < u1 < u.
Then, from (1.12), we have that κ0 = 1/s0 and κ1 = 1/s1 .
Let ℓ be the length of α measured from α(u0 ) to α(u1 ). Then ℓ = s0 −s1 > 0,
so the definition of involute gives that β 1 = β 0 + (s0 − s1 )tα = β 0 + ℓn0 . Hence
β 1 is a parallel curve to β 0 , and
κ0 1/s0 1 1
= = = = κ1 .
|1 − κ0 ℓ| |1 − ℓ/s0 | |s0 − ℓ| s1

1.12. A sketch of the trace of α is given in Figure 4.
13,57 €
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
TestBanksStuvia Chamberlain College Of Nursng
S'abonner Vous devez être connecté afin de pouvoir suivre les étudiants ou les formations
Vendu
2682
Membre depuis
2 année
Nombre de followers
1195
Documents
1925
Dernière vente
13 heures de cela
TESTBANKS &amp; SOLUTION MANUALS

if in any need of a Test bank and Solution Manual, fell free to Message me or Email donc8246@ gmail . All the best in your Studies

3,9

289 revues

5
158
4
43
3
30
2
20
1
38

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions