Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

HRBUS84 Assignment 2 (LITERATURE REVIEW) 2025 - DUE 31 July 2025 -Consumer Fatigue from Hyperconnectivity and Machine Learning

Note
-
Vendu
-
Pages
14
Qualité
A+
Publié le
04-07-2025
Écrit en
2024/2025

HRBUS84 Assignment 2 (LITERATURE REVIEW) 2025 - DUE 31 July 2025; 100% TRUSTED Complete, trusted solutions and explanations. For assistance, Whats-App 0.6.7-1.7.1-1.7.3.9. Ensure your success with us. Consumer Fatigue from Hyperconnectivity and Machine Learning

Montrer plus Lire moins
Établissement
Cours








Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Cours

Infos sur le Document

Publié le
4 juillet 2025
Nombre de pages
14
Écrit en
2024/2025
Type
Examen
Contenu
Questions et réponses

Sujets

Aperçu du contenu

HRBUS84
Assignment 2 2025
Consumer Fatigue from Hyperconnectivity and
Machine Learning

Due Date: 31 July 2025


LITERATURE REVIEW: CONSUMER FATIGUE FROM HYPERCONNECTIVITY AND
MACHINE LEARNING

1. INTRODUCTION

In today’s digital world, consumers interact constantly with smart devices, apps, and
websites. These interactions are shaped by machine learning (ML), which helps
businesses offer personalised content, product recommendations, and targeted
advertisements. While these technologies make life more convenient, they can also
overwhelm users. This experience of exhaustion and emotional burnout caused by
digital exposure is referred to as ―consumer fatigue.‖

Machine learning plays a central role in this problem. By collecting and analysing user
data, it delivers non-stop content such as ads, suggestions, and notifications. As Abbas
Terms of use
et al. (2022) explain, the Stressor-Strain Theory helps us understand how such systems
By making use of this document you agree to:
become digital stressors that Use negatively affect
this document as ausers.
guide forThe result
learning, is not only
comparison emotional
and reference purpose,
Terms of use
 Not to duplicate, reproduce and/or misrepresent the
and mental fatigue but also dissatisfaction with digital platforms. contents of this document as your own work,
By making use of this document you agree to:
 document
Use this
 Fully accept the consequences
solely as a guide forshould you plagiarise
learning, reference,or and
misuse this document.
comparison purposes,
 Ensure originality of your own work, and fully accept the consequences should you plagiarise or misuse this document.
 Comply with all relevant standards, guidelines, regulations, and legislation governing academic and written work.

Disclaimer
Great care has been taken in the preparation of this document; however, the contents are provided "as is" without any express or
implied representations or warranties. The author accepts no responsibility or liability for any actions taken based on the
information contained within this document. This document is intended solely for comparison, research, and reference purposes.
Reproduction, resale, or transmission of any part of this document, in any form or by any means, is strictly prohibited.

, +27 67 171 1739



LITERATURE REVIEW: CONSUMER FATIGUE FROM HYPERCONNECTIVITY
AND MACHINE LEARNING




1. INTRODUCTION

In today’s digital world, consumers interact constantly with smart devices, apps, and
websites. These interactions are shaped by machine learning (ML), which helps
businesses offer personalised content, product recommendations, and targeted
advertisements. While these technologies make life more convenient, they can also
overwhelm users. This experience of exhaustion and emotional burnout caused by
digital exposure is referred to as ―consumer fatigue.‖

Machine learning plays a central role in this problem. By collecting and analysing
user data, it delivers non-stop content such as ads, suggestions, and notifications.
As Abbas et al. (2022) explain, the Stressor-Strain Theory helps us understand how
such systems become digital stressors that negatively affect users. The result is not
only emotional and mental fatigue but also dissatisfaction with digital platforms.

In South Africa, mobile connectivity continues to rise, especially among the youth,
with more people gaining access to the internet and smart devices each year
(Brubaker, 2022). At the same time, consumers are being exposed to more machine
learning-powered content through shopping apps, streaming services, and social
media platforms. Despite this trend, limited research exists on how this exposure
affects the well-being of South African consumers.

This literature review explores the connection between machine learning and
consumer fatigue. It begins by reviewing recent studies, identifying key knowledge
gaps, and examining how machine learning affects consumer behaviour. It also
looks at the effects of hyperconnectivity and information overload and compares
theories relevant to this topic.




Disclaimer
Great care has been taken in the preparation of this document; however, the contents are provided "as is"
without any express or implied representations or warranties. The author accepts no responsibility or
liability for any actions taken based on the information contained within this document. This document is
intended solely for comparison, research, and reference purposes. Reproduction, resale, or transmission
of any part of this document, in any form or by any means, is strictly prohibited.
2,66 €
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
EduPal University of South Africa (Unisa)
S'abonner Vous devez être connecté afin de pouvoir suivre les étudiants ou les formations
Vendu
149208
Membre depuis
7 année
Nombre de followers
35996
Documents
4352
Dernière vente
7 heures de cela

4,2

13562 revues

5
7808
4
2689
3
1791
2
455
1
819

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions