CF >
ady b + y
A
-
+
**
r2 = X +
y2 parallel
do :
-
,B
y
=
Ae + BeBX
X =
rcusO *x
perpen = &
y
=
(A + Bx)e
y = Using
**
2 zz = V, Uz (cos0 , + On + isin 0 , + 02) pigi y =
e
(AcosqX Bringx) +
z = rn (cosno isinno)
yi)
+
(z1 =(x +
z" +
En =
2 cosno
12-z , 1 : r
↓
(x Tradius
+
yi)
z" -
En = zisinno
Trigonometry
1 sin20 + cos"0 =
1 Sin 20 = 2 Sinocoso
SecO :
cos20 cos"0-sin"O
sino
=
COSO tano :
=
2Cos"0 - 1
1
coseco : = 1- Isin20
sinO
1 + tano =
seco
Integration
1 200 tan 20 = I fan O
Cot O : -
sino 1 + an20
fanO coseco
-
1 + cotto =
aX
lax" ax =
n + 1
Differentiation =
ady b + y
A
-
+
**
r2 = X +
y2 parallel
do :
-
,B
y
=
Ae + BeBX
X =
rcusO *x
perpen = &
y
=
(A + Bx)e
y = Using
**
2 zz = V, Uz (cos0 , + On + isin 0 , + 02) pigi y =
e
(AcosqX Bringx) +
z = rn (cosno isinno)
yi)
+
(z1 =(x +
z" +
En =
2 cosno
12-z , 1 : r
↓
(x Tradius
+
yi)
z" -
En = zisinno
Trigonometry
1 sin20 + cos"0 =
1 Sin 20 = 2 Sinocoso
SecO :
cos20 cos"0-sin"O
sino
=
COSO tano :
=
2Cos"0 - 1
1
coseco : = 1- Isin20
sinO
1 + tano =
seco
Integration
1 200 tan 20 = I fan O
Cot O : -
sino 1 + an20
fanO coseco
-
1 + cotto =
aX
lax" ax =
n + 1
Differentiation =