Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Structural design summary lecture notes

Vendu
7
Pages
57
Publié le
12-04-2019
Écrit en
2017/2018

Detailed summary of the structural design part of the course 'Statics of Structures' (7P3X0). Questions and the answers to it after each chapter are also discussed in this summary.

Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
12 avril 2019
Nombre de pages
57
Écrit en
2017/2018
Type
Resume

Sujets

Aperçu du contenu

Chapter 1 – Introduction

Definition of a structure
 A structure is a physical system used to direct load from one place to another
 The following is important for a structure
o The structural systems used
o The structural materials that make these systems
o The forces acting on the structure
o The load-bearing subsurface the structure is placed upon

History of construction
 Pressure-based system: walls loaded in plane
o Materials: timber, natural stone and bricks (not able to withstand tension stresses)
o Ex.: Stonehenge
 Flooring structures
o Materials: wooden beams, arches and domes
 Pillars, B.C.
o Materials: marble blocks and wooden dowels
o Ex.: Structural simple Doric columns, slender Corinthian and Ionic Columns, Greek
architraves (monolithic stone beams), Roman arches and vaults
 Gothic style, 13th century
o Materials: pressure loaded timber and stone
o Ex.: flying and heavy buttresses to avoid tensile stresses
 Introduction of iron, 18th century
o Materials: structural material iron, can withstand tensile and compressive stresses
o Ex.: iron arch bridge over the Severn by Coalbrookdale
 Concrete material back into focus, 19th century
o Materials: concrete and steel for reinforcement
 In summary: In summary, in the course of history a shift occurred from the use of
compression systems to systems where compression and tension collaborate or only tension
is present. This evolution is related to the development of materials that are able to absorb
large tensile stresses and the need that exists to make larger spans.

Structural Systems
 A structural system is determined by the way it carries the loads, following systems are
distinguished

Structures loaded in compression
Vertical structures Columns Loaded according to their axis
Walls Loaded in plane
Spanning structures Arches Loaded according to their axis
Shells Loaded in plane
Structures loaded in tension
Vertical structures Tension columns Loaded according to their axis
Cables Loaded according to their axis
Spanning structures Cable structures Loaded according to their axis
Membrane structures Loaded in plan

, Structures loaded in bending
Vertical Structures Façade members Loaded perpendicular to their
axis
Walls Loaded perpendicular to plane
Spanning Structures Beams Loaded perpendicular to their
axis
Floors or plates Loaded perpendicular to plane
Portal frames
Assembly of columns and beams using a fixed connection


Structural materials
Structural materials distinction
 Natural materials
o Stone and timber
o Used for centuries, well known characteristics, variable quality, high material safety
factors
 Artificial produced materials
o Steel and aluminium-alloys
o Produced under controlled conditions, production subjected to inspections and
tests, consistent material, low material safety factors
o Concrete is an intermediate natural and artificial
 New materials
o Fibre reinforced composites
o Fully fabricated, behavior net yet fully understood, high material safety factors
 Old materials
o Wrought iron and cast iron
o Used to be applied in structures, now replaced by steel

Most applied materials
 Steel
o Iron with carbon and other additives
o S235, S275, S355 (s = steel, number = yield stress) = structural steel types
o FeB500 = rebar for reinforced concrete
o FEPI850 = used for cables and pre-stressed strands
 Concrete
o Cement, fine aggregates, course aggregates, water, 1:2:4
o C20/25 (characteristic cube compression strength 25 N/mm2)
o Made by hydration
o Brittle material, tensile strength 10% of compressive strength
 Timber
o Hardwood (deciduous = drops leaves)
o Softwood (coniferous = evergreen), grow faster so cheap and more used, C14
(coniferous 18 N/mm2 bending strength)
 Masonry
o Bricks: clay, waal-size, maas-size
o Natural stone
o Concrete blocks: cheapest building materials, solid or hollow

, o Calcium Silicate blocks: sand, cement, lime and water
 Aluminium
o Made from bauxite
o Lightweight, strong, corrosion resisting
o Energy consuming so twice as expensive as steel
o Made stronger by adding 5% other materials  alloys with low modulus of elasticity
and maximum allowable temperature
 Fibre reinforced composites
o Fibres (glass fibres, carbon fibres) and matrix (polyester, vinyl ester, epoxy)

Properties of Structural Materials
 Ideal structural material is lightweight, so the self-weight is small compared to total load
acting on it.
 Stress-Weight-Ration (SWR) = characteristic strength (kN/m2) / volumetric weight (kN/m3)
o Maximum allowable length can be determined
 Strength determines ultimate limit state (ULS) of structures
 Stiffness determines serviceability limit state (SLS) of the structure
 Sustainability, fatigue, toughness/brittleness, creep behavior, fire behavior, density, costs,
environmental impact




Structural Safety
 Structural safety
o The design load Sd = characteristic load Sk x load factor ys
o The design strength Rd = characteristic strength Rk / partial safety factor ym
o Structure is sufficiently safe if it meets the requirements:




 Design strength
o Follows from the strength function R of the design model. This model is based on
theoretical considerations and on observations of real behavior of structures during
tests.
o Material factors structural material
 Steel: Ym = 1
 Timber Ym = 1.2

,  Concrete: Ym = 1.40
 Stone = Ym = 1.80
 From an economic point of view it is not useful that every building has the same structural
safety. Therefore, reliability classes are determined.
o Reliability class 1: structures in which no people are present during extremely bad
weather
 Ex.: greenhouses
o Reliability class 3: structures that will not only give great financial impact if collapsed
but also large human, emotional or social damage
 Ex.: residential buildings, office buildings, bridges and power plants
o Reliability class 2: applies to all structures not in classed 1 or 3
 Ex.: single family houses

Loads
 Eurocode describes all load cases that should be taken into account. Consist of 10 volumes.
o What is the characteristic value of the live load? Should the calculation include a thick
or thin layer of snow?
o Which loads should be taken into account in a load combinations and to what extent?
 Types of loading
o Permanent loads (G): vary little in time
 Ex.: Self-weight, ground pressure, loads by fluids in storage tanks
o Variable (live) loads (Q): vary in time in size
 Qm instantaneous / quasi-permanent (kN/m2)= almost always, follows from
statistical distribution
 Qrep extreme load (kN) = extreme value of variable load, once in 50 years
 Ψ = ratio between instantenous value and extreme value
 Ex.: Wind, people, furniture, decorations, rain
o Accidental loads (Fa): large and disastrous consequences, low probability of
occurrence
 Ex: gas explosion, fire, collusion of vehicles, earthquakes
 Design load Sd = characteristic load Sk x load factor ys
o Load factors for reliability class 3




 Load combinations in accordance to Eurocode I
5,99 €
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Avis des acheteurs vérifiés

Affichage de tous les avis
5 année de cela

5,0

1 revues

5
1
4
0
3
0
2
0
1
0
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
lenaeindhoven Technische Universiteit Eindhoven
S'abonner Vous devez être connecté afin de pouvoir suivre les étudiants ou les formations
Vendu
10
Membre depuis
6 année
Nombre de followers
9
Documents
4
Dernière vente
2 année de cela

5,0

1 revues

5
1
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions