Limite, continuité, théorème des valeurs intermédiaires,
dérivabilité, théorèmes de Rolle et des accroissements finis
I Limites Continuités
Exercice 1 :
Soit 𝑓 : ]−1, +∞[ → ℝ la fonction définie par :
𝑥
𝑓 (𝑥 ) =
√1 + 𝑥 2 − √1 + 𝑥
Déterminer les limites de 𝑓, si elle existent, en 0 et en +∞.
Allez à : Correction exercice 1 :
Exercice 2 :
Soit 𝑓 : ℝ∗ → ℝ la fonction définie par
1
𝑓(𝑥 ) = 𝑥𝐸 (𝑥 − )
𝑥
Montrer que 𝑓 admet une limite en 0 et déterminer cette limite.
Allez à : Correction exercice 2 :
Exercice 3 :
Déterminer les limites suivantes
√1 + 𝑥 − √1 + 𝑥 2 √1 + 𝑥 2 − √1 + 𝑥
𝑎) lim ; 𝑏) lim ;
𝑥→0 𝑥 𝑥→+∞ 𝑥2
𝑥≠0
ln(1 + 𝑥 2 ) ln(𝑥 )
𝑐) lim ; 𝑑) lim
𝑥→0 sin2 (𝑥 ) 𝑥→1 𝑥 − 1
𝑥≠0
Allez à : Correction exercice 3 :
Exercice 4 :
Calculer
𝐸(ln(𝑥 ))
lim
𝑥→+∞ 𝑥
Allez à : Correction exercice 4 :
Exercice 5 :
Calculer, si elles existent les limites
𝐸(ln(√𝑥)) ln(1 + 𝑥 ) − 𝑥
lim et lim
𝑥→+∞ √𝑥 𝑥→0 𝑥2
Allez à : Correction exercice 5 :
Exercice 6 :
Soit 𝑓 : ℝ → ℝ définie par
√𝑥 2
𝑓 (0) = 0 et 𝑓 (𝑥 ) = 𝑥 + si 𝑥 ≠ 0
𝑥
Déterminer l’ensemble des points où elle est continue.
Allez à : Correction exercice 6 :
1
,Limites, continuité dérivabilité Pascal Lainé
Exercice 7 :
Calculer si elles existent
1.
ln(1 + 𝑒 2𝑥 )
lim
𝑥→+∞ 𝑥
2.
7 − 1
lim 𝑥 − 2 𝑒𝑥2
𝑥→0
Allez à : Correction exercice 7 :
Exercice 8 :
Soit 𝑓𝑛 : ℝ → ℝ l’application définie, pour tout 𝑛 ∈ ℕ, par :
𝑓𝑛 (𝑥 ) = ln(1 + 𝑥 𝑛 ) + 𝑥 − 1
1. Montrer qu’il existe 𝑐𝑛 ∈ [0,1] tel que 𝑓𝑛 (𝑐𝑛 ) = 0.
2. Montrer que 𝑓𝑛 est strictement croissante sur ℝ+, en déduire que 𝑐𝑛 est unique.
Allez à : Correction exercice 8 :
Exercice 9 :
Soit 𝑓 la fonction définie sur [1, +∞[ par 𝑓𝑛 (𝑥 ) = 𝑥 𝑛 − 𝑥 − 1, avec 𝑛 ≥ 2.
1. Montrer qu’il existe un unique 𝑥𝑛 > 1 tel que 𝑓𝑛 (𝑥𝑛 ) = 0
2. Montrer que 𝑓𝑛+1 (𝑥𝑛 ) > 0.
3. En déduire que la suite (𝑥𝑛 ) est décroissante et quelle converge vers une limite 𝑙.
4. Déterminer 𝑙.
Allez à : Correction exercice 9 :
Exercice 10 :
Soit 𝑛 ∈ ℕ∗ . Soit 𝑓𝑛 une fonction définie sur [0,1] par :
𝑥
𝑓𝑛 (𝑥 ) = 1 − − 𝑥 𝑛
2
1. Montrer qu’il existe un unique 𝑥𝑛 ∈ [0,1] telle que 𝑓𝑛 (𝑥𝑛 ) = 0.
2. Montrer que pour tout 𝑛 ∈ ℕ∗ , 𝑓𝑛+1 (𝑥𝑛 ) > 0,
3. En déduire que (𝑥𝑛 )𝑛∈ℕ∗ est monotone et qu’elle converge vers une limite 𝑙.
4. Supposons qu’il existe 𝑀 ∈ ℝ tel que pour tout 𝑛 ∈ ℕ∗ 0 ≤ 𝑥𝑛 ≤ 𝑀 < 1
a. Calculer la limite de 𝑥𝑛𝑛 lorsque 𝑛 tend vers l’infini.
b. Montrer qu’il y a une contradiction et en déduire la limite de (𝑥𝑛 )𝑛∈ℕ∗
Allez à : Correction exercice 10 :
Exercice 11 :
1. Soient 𝑎 et 𝑏 des nombres réels tels que 𝑎 < 𝑏 et 𝑓 une application de [𝑎, 𝑏] dans [𝑎, 𝑏]
a) On suppose que pour tout (𝑥, 𝑦) ∈ [𝑎, 𝑏] × [𝑎, 𝑏] on a :
|𝑓(𝑥 ) − 𝑓 (𝑦)| ≤ |𝑥 − 𝑦|
Montrer que 𝑓 est continue sur [𝑎, 𝑏].
En déduire qu’il existe 𝑥 ∈ [𝑎, 𝑏], tel que 𝑓 (𝑥 ) = 𝑥.
b) On suppose maintenant que pour tout (𝑥, 𝑦) ∈ [𝑎, 𝑏] × [𝑎, 𝑏] 𝑥 ≠ 𝑦 on a :
|𝑓(𝑥 ) − 𝑓 (𝑦)| < |𝑥 − 𝑦|
Montrer qu’il existe un unique 𝑥 ∈ [𝑎, 𝑏], tel que 𝑓 (𝑥 ) = 𝑥
2. On désigne par 𝑓 l’application de [0,2] dans ℝ, définie pour tout 𝑥 ∈ [0,2] par :
𝑓 (𝑥 ) = ln(2 + 𝑥 2 )
a) On pose
2
,Limites, continuité dérivabilité Pascal Lainé
𝑀 = max |𝑓 ′(𝑥 )|
𝑥∈[0,2]
Montrer que 𝑀 < 1.
b) En déduire, en montrant que 𝑓 ([0,2]) ⊂ [0,2], qu’il existe un unique 𝑥 ∈ [0,2] tel que 𝑓 (𝑥 ) = 𝑥.
On notera 𝑥̃ cet élément.
c) Montrer que l’application 𝑓 est injective.
On définit la suite (𝑥𝑛 )𝑛∈ℕ de nombres réels par la donnée de :
𝑥0 ∈ [0,2] et 𝑥𝑛+1 = 𝑓 (𝑥𝑛 ) si 𝑛 ≥ 0
d) Montrer que si 𝑥0 ≠ 𝑥̃, alors pour tout 𝑛 ≥ 0, 𝑥𝑛 ≠ 𝑥̃.
e) On suppose que 𝑥0 ≠ 𝑥̃. Montrer que pour tout 𝑛 ≥ 0
|𝑥𝑛+1 − 𝑥̃ |
≤𝑀
|𝑥𝑛 − 𝑥̃ |
f) En déduire que pour tout 𝑥0 ∈ [0,2], la suite (𝑥𝑛 )𝑛∈ℕ converge vers 𝑥̃.
On donne 0,69 < ln(2) < 0,7 et 1,79 < ln(6) < 1,8.
Allez à : Correction exercice 11 :
II Continuité dérivabilité
Exercice 12 :
Les fonctions 𝑓, 𝑔 et ℎ: ℝ → ℝ définies par :
3
𝑓 ( 𝑥 ) = 𝑥 |𝑥 | ; 𝑔 (𝑥 ) = 𝑥 5 ; ℎ(𝑥 ) = cos (√|𝑥 |)
Sont-elles dérivables en 0 ?
Allez à : Correction exercice 12 :
Exercice 13 :
Soit 𝑓 la fonction définie sur [0,1] par
0 si 𝑥 = 0
𝑥 ln(𝑥 )
𝑓 (𝑥 ) = {𝑥 + si 0 < 𝑥 < 1
1−𝑥
0 si 𝑥 = 1
1. Montrer que 𝑓est continue sur [0,1].
2. Montrer qu’il existe 𝑐 ∈ ]0,1[ telle que 𝑓 ′(𝑐 ) = 0. (on ne demande pas la valeur de 𝑐).
Allez à : Correction exercice 13 :
Exercice 14 :
Etudier la dérivabilité des fonctions suivantes et calculer la dérivée lorsqu’elle existe :
1. 𝑥 ↦ 𝑓 (𝑥 ) = ln(ln(𝑥 )) si 𝑥 > 1
2
2. 𝑥 ↦ 𝑔(𝑥 ) = ln(𝑒 𝑥 + 1) si 𝑥 ∈ ℝ
1
𝑒𝑥 si 𝑥 < 0
3. 𝑥 ↦ ℎ(𝑥 ) = { 0 si 𝑥 = 0
𝑥 ln(𝑥 ) − 𝑥 si 𝑥 > 0
Allez à : Correction exercice 14 :
Exercice 15 :
Soient 𝑎 et 𝑏 deux réels
Soit 𝑓: ℝ → ℝ la fonction définie par
3
, Limites, continuité dérivabilité Pascal Lainé
sin(𝑎𝑥 )
si 𝑥 < 0
𝑓 (𝑥 ) = { 𝑥
1 si 𝑥 = 0
𝑒 𝑏𝑥 − 𝑥 si 𝑥 > 0
1. A l’aide de la règle de L’Hospital déterminer la limite suivante
cos(𝑥 ) 𝑥 − sin(𝑥)
lim
𝑥→0 𝑥2
2. Déterminer 𝑎 et 𝑏 pour que 𝑓 soit continue sur ℝ.
3. Déterminer 𝑎 et 𝑏 pour que 𝑓 soit dérivable sur ℝ.
Allez à : Correction exercice 15 :
Exercice 16 :
Soit 𝑎 et 𝑏 deux nombres réels. On définit la fonction 𝑓: ℝ → ℝ par
𝑎𝑥 + 𝑏 si 𝑥 ≤ 0
𝑥→{ 1
si 𝑥 > 0
1+𝑥
1. Donner une condition sur 𝑏 pour que 𝑓 soit continue sur ℝ.
2. Déterminer 𝑎 et 𝑏 tels que 𝑓 soit dérivable sur ℝ et dans ce cas calculer 𝑓 ′(0).
Allez à : Correction exercice 16 :
Exercice 17 :
Soit 𝑓: ]0, +∞[ → ℝ l’application définie par
𝑒𝑥
𝑓 (𝑥 ) = 𝑒
𝑥
1. Etudier les variations de 𝑓.
2. Comparer les réels 𝑒 𝜋 et 𝜋 𝑒 .
Allez à : Correction exercice 17 :
Exercice 18 :
On considère l’application 𝑓: [−1,1] → ℝ, définie par :
1
𝑓(𝑥 ) = (√1 + 𝑥 2 − √1 − 𝑥 2 ) , si 𝑥 ≠ 0
{ 𝑥
𝑓 (𝑥 ) = 0 si 𝑥 = 0
1. Montrer que 𝑓 est continue sur [−1,1].
2. Montrer que 𝑓 est dérivable sur ]−1,1[ et déterminer 𝑓′(𝑥) sur ]−1,1[.
3. Montrer que l’application dérivée 𝑓 ′: ]−1,1[ → ℝ est continue sur ]−1,1[.
Quel est l’ensemble des 𝑥 ∈ ]−1,1[ pour lesquels 𝑓 ′(𝑥 ) = 0.
4. Dresser le tableau de variation de 𝑓 et tracer son graphe. En déduire que 𝑓 est injective.
5. On désigne par 𝑓̂ la bijection de [−1,1] sur 𝑓 ([−1,1]) définie par 𝑓̂(𝑥 ) = 𝑓(𝑥 ), pour tout 𝑥 ∈
[−1,1] et on désigne par 𝑓̂ −1 sa bijection réciproque.
′
Justifier l’existence et déterminer (𝑓̂ −1 ) (0).
Allez à : Correction exercice 18 :
Exercice 19 :
Soit 𝑓: ℝ → ℝ la fonction définie par :
𝑒𝑥 si 𝑥 < 0
𝑓 (𝑥 ) = {
𝑎𝑥 2 + 𝑏𝑥 + 𝑐 si 𝑥 ≥ 0
Déterminer 𝑎, 𝑏 et 𝑐 dans ℝ tels que 𝑓 soit 𝐶 2 (c’est-à-dire deux fois dérivables et que la dérivée
seconde soit continue). Est-ce que dans ce cas 𝑓 est 𝐶 3 ?
Allez à : Correction exercice 19 :
4