Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4,6 TrustPilot
logo-home
Autre

47 Exercices Corrigées Sur les Limites, continuité et dérivabilité (Première année-S1)

Note
-
Vendu
-
Pages
52
Publié le
23-02-2024
Écrit en
2019/2020

47 Exercices Corrigées Sur les Limites, continuité et dérivabilité (Première année-S1) ...... . . . . . . . . . . . . . . . . . . . . Les domaines des sciences technologies et l'informatique classe préparatoire de 1ère année universitaire . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . Ecole Nationale Polytechnique

Montrer plus Lire moins
Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours

Infos sur le Document

Publié le
23 février 2024
Nombre de pages
52
Écrit en
2019/2020
Type
Autre
Personne
Inconnu

Sujets

Aperçu du contenu

Limites, continuité dérivabilité Pascal Lainé

Limite, continuité, théorème des valeurs intermédiaires,
dérivabilité, théorèmes de Rolle et des accroissements finis


I Limites Continuités

Exercice 1 :
Soit 𝑓 : ]−1, +∞[ → ℝ la fonction définie par :
𝑥
𝑓 (𝑥 ) =
√1 + 𝑥 2 − √1 + 𝑥
Déterminer les limites de 𝑓, si elle existent, en 0 et en +∞.
Allez à : Correction exercice 1 :

Exercice 2 :
Soit 𝑓 : ℝ∗ → ℝ la fonction définie par
1
𝑓(𝑥 ) = 𝑥𝐸 (𝑥 − )
𝑥
Montrer que 𝑓 admet une limite en 0 et déterminer cette limite.
Allez à : Correction exercice 2 :

Exercice 3 :
Déterminer les limites suivantes
√1 + 𝑥 − √1 + 𝑥 2 √1 + 𝑥 2 − √1 + 𝑥
𝑎) lim ; 𝑏) lim ;
𝑥→0 𝑥 𝑥→+∞ 𝑥2
𝑥≠0
ln(1 + 𝑥 2 ) ln(𝑥 )
𝑐) lim ; 𝑑) lim
𝑥→0 sin2 (𝑥 ) 𝑥→1 𝑥 − 1
𝑥≠0
Allez à : Correction exercice 3 :

Exercice 4 :
Calculer
𝐸(ln(𝑥 ))
lim
𝑥→+∞ 𝑥
Allez à : Correction exercice 4 :

Exercice 5 :
Calculer, si elles existent les limites
𝐸(ln(√𝑥)) ln(1 + 𝑥 ) − 𝑥
lim et lim
𝑥→+∞ √𝑥 𝑥→0 𝑥2
Allez à : Correction exercice 5 :

Exercice 6 :
Soit 𝑓 : ℝ → ℝ définie par
√𝑥 2
𝑓 (0) = 0 et 𝑓 (𝑥 ) = 𝑥 + si 𝑥 ≠ 0
𝑥
Déterminer l’ensemble des points où elle est continue.
Allez à : Correction exercice 6 :


1

,Limites, continuité dérivabilité Pascal Lainé

Exercice 7 :
Calculer si elles existent
1.
ln(1 + 𝑒 2𝑥 )
lim
𝑥→+∞ 𝑥
2.
7 − 1
lim 𝑥 − 2 𝑒𝑥2
𝑥→0
Allez à : Correction exercice 7 :

Exercice 8 :
Soit 𝑓𝑛 : ℝ → ℝ l’application définie, pour tout 𝑛 ∈ ℕ, par :
𝑓𝑛 (𝑥 ) = ln(1 + 𝑥 𝑛 ) + 𝑥 − 1
1. Montrer qu’il existe 𝑐𝑛 ∈ [0,1] tel que 𝑓𝑛 (𝑐𝑛 ) = 0.
2. Montrer que 𝑓𝑛 est strictement croissante sur ℝ+, en déduire que 𝑐𝑛 est unique.
Allez à : Correction exercice 8 :

Exercice 9 :
Soit 𝑓 la fonction définie sur [1, +∞[ par 𝑓𝑛 (𝑥 ) = 𝑥 𝑛 − 𝑥 − 1, avec 𝑛 ≥ 2.
1. Montrer qu’il existe un unique 𝑥𝑛 > 1 tel que 𝑓𝑛 (𝑥𝑛 ) = 0
2. Montrer que 𝑓𝑛+1 (𝑥𝑛 ) > 0.
3. En déduire que la suite (𝑥𝑛 ) est décroissante et quelle converge vers une limite 𝑙.
4. Déterminer 𝑙.
Allez à : Correction exercice 9 :

Exercice 10 :
Soit 𝑛 ∈ ℕ∗ . Soit 𝑓𝑛 une fonction définie sur [0,1] par :
𝑥
𝑓𝑛 (𝑥 ) = 1 − − 𝑥 𝑛
2
1. Montrer qu’il existe un unique 𝑥𝑛 ∈ [0,1] telle que 𝑓𝑛 (𝑥𝑛 ) = 0.
2. Montrer que pour tout 𝑛 ∈ ℕ∗ , 𝑓𝑛+1 (𝑥𝑛 ) > 0,
3. En déduire que (𝑥𝑛 )𝑛∈ℕ∗ est monotone et qu’elle converge vers une limite 𝑙.
4. Supposons qu’il existe 𝑀 ∈ ℝ tel que pour tout 𝑛 ∈ ℕ∗ 0 ≤ 𝑥𝑛 ≤ 𝑀 < 1
a. Calculer la limite de 𝑥𝑛𝑛 lorsque 𝑛 tend vers l’infini.
b. Montrer qu’il y a une contradiction et en déduire la limite de (𝑥𝑛 )𝑛∈ℕ∗
Allez à : Correction exercice 10 :

Exercice 11 :
1. Soient 𝑎 et 𝑏 des nombres réels tels que 𝑎 < 𝑏 et 𝑓 une application de [𝑎, 𝑏] dans [𝑎, 𝑏]
a) On suppose que pour tout (𝑥, 𝑦) ∈ [𝑎, 𝑏] × [𝑎, 𝑏] on a :
|𝑓(𝑥 ) − 𝑓 (𝑦)| ≤ |𝑥 − 𝑦|
Montrer que 𝑓 est continue sur [𝑎, 𝑏].
En déduire qu’il existe 𝑥 ∈ [𝑎, 𝑏], tel que 𝑓 (𝑥 ) = 𝑥.
b) On suppose maintenant que pour tout (𝑥, 𝑦) ∈ [𝑎, 𝑏] × [𝑎, 𝑏] 𝑥 ≠ 𝑦 on a :
|𝑓(𝑥 ) − 𝑓 (𝑦)| < |𝑥 − 𝑦|
Montrer qu’il existe un unique 𝑥 ∈ [𝑎, 𝑏], tel que 𝑓 (𝑥 ) = 𝑥
2. On désigne par 𝑓 l’application de [0,2] dans ℝ, définie pour tout 𝑥 ∈ [0,2] par :
𝑓 (𝑥 ) = ln(2 + 𝑥 2 )
a) On pose

2

,Limites, continuité dérivabilité Pascal Lainé

𝑀 = max |𝑓 ′(𝑥 )|
𝑥∈[0,2]
Montrer que 𝑀 < 1.
b) En déduire, en montrant que 𝑓 ([0,2]) ⊂ [0,2], qu’il existe un unique 𝑥 ∈ [0,2] tel que 𝑓 (𝑥 ) = 𝑥.
On notera 𝑥̃ cet élément.
c) Montrer que l’application 𝑓 est injective.
On définit la suite (𝑥𝑛 )𝑛∈ℕ de nombres réels par la donnée de :
𝑥0 ∈ [0,2] et 𝑥𝑛+1 = 𝑓 (𝑥𝑛 ) si 𝑛 ≥ 0
d) Montrer que si 𝑥0 ≠ 𝑥̃, alors pour tout 𝑛 ≥ 0, 𝑥𝑛 ≠ 𝑥̃.
e) On suppose que 𝑥0 ≠ 𝑥̃. Montrer que pour tout 𝑛 ≥ 0
|𝑥𝑛+1 − 𝑥̃ |
≤𝑀
|𝑥𝑛 − 𝑥̃ |
f) En déduire que pour tout 𝑥0 ∈ [0,2], la suite (𝑥𝑛 )𝑛∈ℕ converge vers 𝑥̃.
On donne 0,69 < ln(2) < 0,7 et 1,79 < ln(6) < 1,8.
Allez à : Correction exercice 11 :

II Continuité dérivabilité

Exercice 12 :
Les fonctions 𝑓, 𝑔 et ℎ: ℝ → ℝ définies par :
3
𝑓 ( 𝑥 ) = 𝑥 |𝑥 | ; 𝑔 (𝑥 ) = 𝑥 5 ; ℎ(𝑥 ) = cos (√|𝑥 |)
Sont-elles dérivables en 0 ?
Allez à : Correction exercice 12 :

Exercice 13 :
Soit 𝑓 la fonction définie sur [0,1] par
0 si 𝑥 = 0
𝑥 ln(𝑥 )
𝑓 (𝑥 ) = {𝑥 + si 0 < 𝑥 < 1
1−𝑥
0 si 𝑥 = 1
1. Montrer que 𝑓est continue sur [0,1].
2. Montrer qu’il existe 𝑐 ∈ ]0,1[ telle que 𝑓 ′(𝑐 ) = 0. (on ne demande pas la valeur de 𝑐).
Allez à : Correction exercice 13 :

Exercice 14 :
Etudier la dérivabilité des fonctions suivantes et calculer la dérivée lorsqu’elle existe :
1. 𝑥 ↦ 𝑓 (𝑥 ) = ln(ln(𝑥 )) si 𝑥 > 1
2
2. 𝑥 ↦ 𝑔(𝑥 ) = ln(𝑒 𝑥 + 1) si 𝑥 ∈ ℝ
1
𝑒𝑥 si 𝑥 < 0
3. 𝑥 ↦ ℎ(𝑥 ) = { 0 si 𝑥 = 0
𝑥 ln(𝑥 ) − 𝑥 si 𝑥 > 0
Allez à : Correction exercice 14 :

Exercice 15 :
Soient 𝑎 et 𝑏 deux réels
Soit 𝑓: ℝ → ℝ la fonction définie par




3

, Limites, continuité dérivabilité Pascal Lainé

sin(𝑎𝑥 )
si 𝑥 < 0
𝑓 (𝑥 ) = { 𝑥
1 si 𝑥 = 0
𝑒 𝑏𝑥 − 𝑥 si 𝑥 > 0
1. A l’aide de la règle de L’Hospital déterminer la limite suivante
cos(𝑥 ) 𝑥 − sin(𝑥)
lim
𝑥→0 𝑥2
2. Déterminer 𝑎 et 𝑏 pour que 𝑓 soit continue sur ℝ.
3. Déterminer 𝑎 et 𝑏 pour que 𝑓 soit dérivable sur ℝ.
Allez à : Correction exercice 15 :

Exercice 16 :
Soit 𝑎 et 𝑏 deux nombres réels. On définit la fonction 𝑓: ℝ → ℝ par
𝑎𝑥 + 𝑏 si 𝑥 ≤ 0
𝑥→{ 1
si 𝑥 > 0
1+𝑥
1. Donner une condition sur 𝑏 pour que 𝑓 soit continue sur ℝ.
2. Déterminer 𝑎 et 𝑏 tels que 𝑓 soit dérivable sur ℝ et dans ce cas calculer 𝑓 ′(0).
Allez à : Correction exercice 16 :

Exercice 17 :
Soit 𝑓: ]0, +∞[ → ℝ l’application définie par
𝑒𝑥
𝑓 (𝑥 ) = 𝑒
𝑥
1. Etudier les variations de 𝑓.
2. Comparer les réels 𝑒 𝜋 et 𝜋 𝑒 .
Allez à : Correction exercice 17 :

Exercice 18 :
On considère l’application 𝑓: [−1,1] → ℝ, définie par :
1
𝑓(𝑥 ) = (√1 + 𝑥 2 − √1 − 𝑥 2 ) , si 𝑥 ≠ 0
{ 𝑥
𝑓 (𝑥 ) = 0 si 𝑥 = 0
1. Montrer que 𝑓 est continue sur [−1,1].
2. Montrer que 𝑓 est dérivable sur ]−1,1[ et déterminer 𝑓′(𝑥) sur ]−1,1[.
3. Montrer que l’application dérivée 𝑓 ′: ]−1,1[ → ℝ est continue sur ]−1,1[.
Quel est l’ensemble des 𝑥 ∈ ]−1,1[ pour lesquels 𝑓 ′(𝑥 ) = 0.
4. Dresser le tableau de variation de 𝑓 et tracer son graphe. En déduire que 𝑓 est injective.
5. On désigne par 𝑓̂ la bijection de [−1,1] sur 𝑓 ([−1,1]) définie par 𝑓̂(𝑥 ) = 𝑓(𝑥 ), pour tout 𝑥 ∈
[−1,1] et on désigne par 𝑓̂ −1 sa bijection réciproque.

Justifier l’existence et déterminer (𝑓̂ −1 ) (0).
Allez à : Correction exercice 18 :

Exercice 19 :
Soit 𝑓: ℝ → ℝ la fonction définie par :
𝑒𝑥 si 𝑥 < 0
𝑓 (𝑥 ) = {
𝑎𝑥 2 + 𝑏𝑥 + 𝑐 si 𝑥 ≥ 0
Déterminer 𝑎, 𝑏 et 𝑐 dans ℝ tels que 𝑓 soit 𝐶 2 (c’est-à-dire deux fois dérivables et que la dérivée
seconde soit continue). Est-ce que dans ce cas 𝑓 est 𝐶 3 ?
Allez à : Correction exercice 19 :
4
4,32 €
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
aminall000

Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
aminall000 Higher National School of Nano science and Nano technology
S'abonner Vous devez être connecté afin de pouvoir suivre les étudiants ou les formations
Vendu
4
Membre depuis
1 année
Nombre de followers
2
Documents
60
Dernière vente
1 année de cela
Courses + Exercices || cours + exercices

Solved exercices ,Summaries and Courses about the field of Science-technology that countain modules : Analysis Algebra Probability statistics Physics Chimestry English French Economics Human engineer Computer science i will upload all the folders for help you BY a low price and sometimes i give some folders for free Courses BY english and French the first folders are

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions