Intro : Durant ma scolarité je me suis retrouvé assez régulièrement dans des classes où 2
élèves fêtaient leur anniversaire le même jour. Pourtant avec 365 jours par an, une trentaine
d’élèves dans la classe, je me suis dit que la probabilité que cela arrive devait être faible.
Assez spontanément, quand j’ai posé cette question à mon entourage, les gens estiment,
quelle que soit la taille de l’échantillon, que cette probabilité est très inférieure à 50%. C’est
ce qu’on appelle le paradoxe des anniversaires. J’ai donc décidé de répondre à la question
en quoi les probabilités permettent-elles de contredire des idées reçues ? Pour répondre à
cette vaste question nous allons nous intéresser au paradoxe des anniversaires, en calculant
la probabilité qu’au moins deux élèves dans une classe fêtent leur anniversaire le même
jour.
Plan : On appelle A l’évènement qui nous intéresse à savoir A : « 2 élèves au moins fêtent
leur anniversaire le même jour. Calculer la probabilité de A est assez compliqué, il y a
beaucoup de possibilités, il peut y en avoir 2, 3, 4 etc.
Donc on va utiliser l’évènement contraire A « aucun élève ne fête son anniversaire le même
jour qu’un autre ». Pour trouver cette probabilité, je vous propose de s’intéresser tout
d’abord au cas où il y a 3 élèves. Et on veut qu’ils n’aient pas la même date d’anniversaire ;
et combien avons-nous alors de possibilités ? Pour le premier élève, on va supposer qu’on a
des années avec 365 jours, donc ici pour le premier élève il y a 365 possibilités, et
maintenant pour le 2ème élève, pour qu’il n’ait pas le même jour d’anniversaire que le
premier on a 364 possibilités et finalement pour le 3 ème élève, on doit enlever les 2 jours
d’anniversaire du 1er et du 2ème. On a donc 363 possibilités. Le nombre de possibilités pour 3
élèves est donc de365 ×364 × 363. Maintenant pour p élèves, ce nombre de possibilités est
de 365 ×364 × … ×(365− p+1). On retrouve bien nos p facteurs ici. Cela peut s’écrire sous la
365 ! p
forme : = A 365. D’ailleurs on peut directement voire la situation comme un
(365−p) !
arrangement puisque l’ordre compte et il n’y a pas de répétition. (L’arrangement d’un
ensemble d’éléments est une disposition ordonnée d’un certain nombre d’éléments de cet
ensemble.
Il faut bien entendu préciser que l’on considère que nous sommes dans une situation
d’équiprobabilité. (Toutes les issues d’une expérience aléatoire ont la même probabilité).
Pour un élève donné, la probabilité qu’il naisse tel jour ou tel autre jour est la même.
'
Nombre d issues de A b Nombre de cas favorables
P ( A )= =
Nombre d ' issuesde Ω Nombre de cas possibles