Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Notes de cours

Math 100 UBC/UBCO full course notes 20+ pages

Note
-
Vendu
-
Pages
22
Publié le
14-05-2023
Écrit en
2022/2023

From start to finish MATH 100 notes with practice problems and examples 20+ pages full of notes and graphs and examples. ORGANIZED.

Établissement
Cours










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
14 mai 2023
Nombre de pages
22
Écrit en
2022/2023
Type
Notes de cours
Professeur(s)
Wayne broughton
Contenu
Toutes les classes

Sujets

Aperçu du contenu

MATH108

101

, ↑ AF(z) 1 % % with wasne.D

TUESDAY JC 10 Introduction
-
to limits


-> pre-cpic review:


1. Given that x=2 is of
proot x3-x-2x+12. factor the polynomial completely and findall i ts roots
of
-

>Che(R: 23 22
- -
8(2) 12 +
X-2 is a f (( +0r


8
= -

4 -
16 12
+ -
x3 -
x" -
8X 12 +
(X
= -
2)(X +x -
6)

(x -
2) (x + 3) (X -
2) The roots are x 1
=

andX = -
3




2.x z
-



x2 +1 -



- rte1)

4(x- ( -
1)- xe
(X
- -
-




2
x -
1




>12 -
2x 1+
-
y2 -
1
=



-
2X

xz - 1 xz -
1




3. Find the equation of
t he line that
p asses through the points (2,5) and 1-1, 2) in the plane
xx

5-1
Findslope
=
->

2 -
1 -
1)

following:y-Y' m(X X')

= -




-> y 3/2X 6
=
+


y
- -
3 3/2(X 2)
= -




3/2X
=
-

3 5 +




1 3/2x 2
=
= +




4. Findthe exact value of COS(-π /6)
7 L
68
2
v 45
=1880:300 using special triangle
=




2452
1

v/2 38
13 1




THURSDAY, JAN 12:PRECALL & INTROTO CALC


1

1: X X 8
=
REFRESHON BASIC GRAPHS

shifted sin (X) graph
M




L
Shifted COS(X) grOPM Y:COS(X) Domain:x0 or



1.Sin (X)
(0,0)u(0,p)

EcosixOY ↳ <
1 >




*
-




2



-
- 1




1:109eX:10n 1


y: 109 - XM Y:109 X
> 7
[0,0 1 -
1 Exponential fxn: y.e*
1 ⑲
Xx,0 ④

&
i
U:104b(V)


V =bu




·finan
piecewise fXn
>




9
Y :(X/,0 ·
(x) X,X>,0

D:( -8,0) Range:1R -

X, ifX <0
↳(0,0
Y: arc an(X)
+




#
I tan(x) 20 (X)
= +

,-> calculus:single variable -> differential (aboutr ates change) the
of main concept is the derivative


·unifiying theme:limits


Limits:Chapter 2 Introducing limits
~If itisitwill
-> -> cause the answer



·consider y f(x) xx 1 x 1 = what is f164)?
:=I 3 i s the
what domain t he
of flx)? x, andx*I
- = -
=
=




x5 -
5x 3 -
1

<(0,1) UC2, 0) - know how to write/readinterval notation


o The graph of this fan seems to keep going
through x 1
=

(where its under), o f(x) near
lets 100k x 1
=




+ (0.9):80.9-1=1.48698.... -> a bit bigger f(1.1) 1.51203=
or even closer to 1 f(0.99):1.490743/f (1.01):1.501245 (f(0.9999):1.499988
29-1
f(1.00001):1.50003// As x gets closer to 1 the fan gets closer to 1.5


· s eems that f(x) is
It getting closer to 1.5 as s ets
x closer to 1:this is the behavior f (x) nedr
of 1
x=


mathematically) we can make f(x) as close
This turns out to be true (can be proved
->
to 1.5 as we want close) if we use
carbitrarily any X value "close


enough"to 1 limit notation


We say the
*
o f f(x):x-1
limit is 1.5 as x approaches 1 im f(x):1.5
x 1
"3-1
->




x
or we can write it out as f(x)-1.5


CS X -
1


7/3 25
-> Now consider f(x) for near
x x 64 f(64)
we know that is or so what
doesMyfex) mean
-
=




of (63.9):2.33287 1 + (63.99999):2.3333287 (f(64.00001):2.333379

25 =
tyMyf(x):
It looks like f(x) is getting
arbitrarily
close to as x is getting close to 64 2


5 253 same
(imf(x) f(64): question
answer, different
so 2
= =




TUESDAY JAN #3
17:LECTURE

LIMITS:CIP1.2 -> Instantaneous velocity

-> If I travel 8 0km/h
at for 1 hr, then I have gone 80km. or i travel 160km in 2 hours, or in one minitravel 800 8/6km
=




over time period:distance travelled
>velocity
time taken




0 What does m ean
it to be going 80
at km/h at one point in time (an instant)?


I
travel a distance in time so v =

Ca "
-> We lookata time interval around instant:
that >t


we can define aus velocity:a travelled on thatinterval = change in position
length of time change in time




As
* interval
that gets shorter & shorter, the due velocity
a pproaches a limit
value -> t he
That limiti s the instantaneous velocity
-




CLP-1:1.3 - EXPLORING LIMITS


taking enough"to the (x+a)
0ximf(x)=L:means we can make f(x) as close to (as we like ("arbitrarily
close"), by X "close a
value of




-.
-
AMPLE:
Dimsincx), since is defined
not at 10bc is



sincxl
-> x X sin(0.1) 0.998334.....
=

3 i n trig fans is in radians
in calculus, we assume x
0.10.448334 8.2




Whatifwe use -0.1: same:0.998334


0.01:0.999983 -
8.82:0.99999....
I It180ks like
MMsincx)
y
X
= 1 This turns out to be true!




2(1m(x+2): in
we plug
cant x 2 Yes we could (and is the rightanswer), but limit
w hat
t hats not
-
=




means


↳ 1.999:(1.999) +2 5.996001:It100ks like =




imz (x+ 2) is the same as 22 +

2 6 =




-mes Dlim doesnt
exist


EG#3) Le f(x) +
sin),
=

for x is
=O- what
limo sin(i)? H(t)




I
SAS x =
0, gets larger (+ or -- so sink) oscillates faster faster btwn-1 and 1


so
him sin(i) DNE:sin(A) does not "settle down"close to one value justkeeps
it jumping again
away
1


4) "Differentvalues on the sizes
left andright -> H(t):
Let

Goit 1 if
+ co


t >I
-
t
8

H:heavyside txn
14,28 €
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
femkaotto-babin

Faites connaissance avec le vendeur

Seller avatar
femkaotto-babin UBC
S'abonner Vous devez être connecté afin de pouvoir suivre les étudiants ou les formations
Vendu
0
Membre depuis
2 année
Nombre de followers
0
Documents
8
Dernière vente
-

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions