Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Notes de cours

OMPI 1 - Espaces Vectoriels normés

Note
-
Vendu
-
Pages
14
Publié le
13-03-2023
Écrit en
2022/2023

Condensé du cours de OMPI abordant les principaux thèmes de la matière comme : Espaces vectoriels, norme, produit scalaire...










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
13 mars 2023
Nombre de pages
14
Écrit en
2022/2023
Type
Notes de cours
Professeur(s)
Gioana
Contenu
Toutes les classes

Aperçu du contenu

OMPI 1 - ESPACES
VECTORIELS NORMÉS

I ) Nornes


Soit F- 1K
Def : un sur sur E
'
eu , une norme :




II. 11
E -
R -1
vérifiait :



Hay ) C- F-2
i ) inégalité triangulaire :
, Katy " ≤ Hall -11411


ii )
homogénéité : tbc IR ,
the EE
;
Udall = HI Hall


iii ) the C- F-
Hall
, =
OR x =
0E

Exemple sur F- = Reki a


)
"
"
.




( ¥ lait)
"


norme euclidienne l
'
: txt =
Hella =
,
the =
Ë ,
E R
→ notre associée au
produit scalaire :

"

( Esa )
'

Valls =




R

Hall
.IE lait
'

norme l :
,
=



d "
°
'
→ norne l' , Vp C- 21 ; llxllp =
( .
/ai /P)




Exemple : sur F- = Ca / [aib]iR ) avec - • < a < b<
b
+ a
fixés
/
'

→ norme L : Hull - = lulu) / du
^ ,
a


b
Np
' → norme
LP :
Hully :( | lulu) / du .




Ï
a
(




i Ca Hull UK)
'
→ norme :
,
=
sup
a b relais]




II. Normes et distances




De / ✗ ensemble ✗
soit
quelconque Une distance



: un .
sur et une



application d : ✗ ✗ ✗ →
☒ + vérifiant :




i ) Inégalité triangulaire : d /x , z
) ≤ dla ,y ) +
dly , 2)
ii )
symétrie
:
they ) C- ✗ , dln , y ) =
dly , ) x

2
iii ) tla y ) ,
E ✗ ; dlu y )=o ,
✗ =
y

, 2

Distance associée à une norme :


set F- un ev et II. Il ne noue sur F-

l' d F- E distance
application : : ✗ → Rt et une .




thy ) →
dla , y) = Ux -


yll





Exemple Rd ?


1-
: sur




norme euclidienne distance euclidienne x
o




'
→ norme l
"
distance l ( taxi -
distance ) -




.
Remarque : il existe des distances non -
issues de normes




dans R2
Exemple distance SNCF

: :



^




a

+



Y
+



S




II. Élements de
topologie de F- UN




Set F- un K -
eu muni d' une nerve II. NE


Def Sat E E et 70 note

: x r
; on .




*
BE / x
,
r ) = { YEE ,
Ha y " <- r } ( boule ouverte )

* BE ln, r ) =
fy c- E ; Ha -

yl ≤ r } ( boule ferrée )


R2
Exemple dans


:



n d d




> > >




BIO ;) par II. 112 BIO, , ) par II. Il , 1310,1 ) par II. Ita
5,49 €
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
largogioana

Faites connaissance avec le vendeur

Seller avatar
largogioana ENPC
Voir profil
S'abonner Vous devez être connecté afin de pouvoir suivre les étudiants ou les formations
Vendu
0
Membre depuis
2 année
Nombre de followers
0
Documents
8
Dernière vente
-

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions