Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Autre

Mathématiques - Dérivabilités

Note
-
Vendu
-
Pages
17
Publié le
01-03-2023
Écrit en
2020/2021

Le document est un cours sur les fonctions et la dérivation en mathématiques. Il est organisé en deux grandes parties, chacune subdivisée en unités et sous-unités. La première partie, intitulée "Approche graphique et nombre dérivé", comprend trois sections. La première section est une introduction générale. La deuxième section présente une approche graphique de la notion de dérivée. La troisième section s'intéresse au nombre dérivé, avec une définition, une interprétation graphique et une distinction entre le nombre dérivé à gauche et à droite. La deuxième partie, "Fonction dérivée", comprend six sections. La première section explique comment effectuer une dérivation sur un intervalle. La deuxième section présente les dérivées des fonctions usuelles. La troisième section énonce les règles de dérivation, notamment la forme f+g, kf, f x g, f x f, 1/f et f/g, et un tableau récapitulatif des opérations sur les fonctions dérivables. La quatrième section traite de la dérivée d'une fonction composée. La cinquième section explore les dérivées et les variations. La sixième et dernière section se concentre sur la recherche des extrema d'une fonction, avec une définition et des exemples d'application. Chaque sous-unité du document contient des explications détaillées, des définitions, des exemples et des théorèmes pour aider les étudiants à comprendre les concepts. Le document comprend également des tableaux et des graphiques pour illustrer les différentes notions et les aider à mieux comprendre les relations entre les concepts.

Montrer plus Lire moins










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
1 mars 2023
Nombre de pages
17
Écrit en
2020/2021
Type
Autre
Personne
Inconnu

Sujets

Aperçu du contenu

L1-SDG-Mathématiques 1 P. Loup - L. Bonifas




Module 2:
Dérivabilité

Table des matières

Unité 1 - Approche graphique et nombre dérivé ...................................................................... 2
I - Introduction ................................................................................................................................. 2
II - Approche graphique................................................................................................................... 3
III - Nombre dérivé ........................................................................................................................... 4
1 ) Définition............................................................................................................................................... 4
2 ) Interprétation graphique : équation d’une tangente ................................................................................. 5
3 ) Nombre dérivé à gauche, nombre dérivé à droite .................................................................................... 6
Unité 2 - Fonction dérivée......................................................................................................... 7
I - Dérivation sur un intervalle ........................................................................................................ 7
II - Dérivées des fonctions usuelles .................................................................................................. 7
III - Règles de dérivation .................................................................................................................. 8
1 ) Forme f+g .............................................................................................................................................. 8
2 ) Forme kf (k réel) .................................................................................................................................... 8
3 ) Forme f x g ............................................................................................................................................ 9
4 ) Forme f x f ............................................................................................................................................. 9
5 ) Forme 1/f ............................................................................................................................................. 10
6 ) Forme f/g ............................................................................................................................................. 10
7 ) Tableau récapitulatif des opérations sur les fonctions dérivables :......................................................... 11
8 ) Exemples de dérivation nécessitant l’utilisation de différentes opérations ............................................. 12
IV - Dérivée d’une fonction composée ........................................................................................... 13
V - Dérivées et variations ............................................................................................................... 14
VI - Recherche des extrema d’une fonction .................................................................................. 14
1 ) Définitions et propriétés ....................................................................................................................... 14
2 ) Exemple d’application.......................................................................................................................... 16




Page

,L1-SDG-Mathématiques 1 P. Loup - L. Bonifas




Module 2:
Dérivabilité

Unité 1 - Approche graphique et nombre dérivé

I - Introduction

Le « taux de variation » mesure la variation relative entre deux grandeurs, il peut représenter
par exemple un taux d'évolution entre deux dates.

Mathématiquement, c'est l'écart entre deux valeurs prises par une fonction rapporté à l'écart
qui existe entre leurs deux antécédents.

f ( x) − f (a)
taux de variation =
x−a

Donc, ici, a et x correspondent à deux abscisses.

Il est équivalent de raisonner directement avec l'écart entre a et x, qu'on appelle généralement
h , soit : h = x − a ce qui permet d’écrire : x = a + h


f ( a + h) − f ( a )
taux de variation =
h

Pourquoi évoquer ces notions ici ?

Parce que la définition de la dérivée en un point a , f  ( a ) ,fait intervenir le taux de
variation.

C'est la limite de celui-ci lorsque h tend vers zéro.


f ( a + h) − f ( a )
f '(a) = lim
h →0 h




Page

, L1-SDG-Mathématiques 1 P. Loup - L. Bonifas




II - Approche graphique

La dérivée est un outil mathématique qui permet de déterminer la pente d'une courbe.

Prenons une fonction f et un point a sur l'axe des abscisses et essayons de mesurer la pente de
la courbe au point M d'abscisse a.




Cette pente est égale à la pente de sa tangente au même point.


On sait calculer la pente c d'une droite qui passe par deux points A et B avec la formule :


yB − y A
c=
xB − xA

Mais ici nous n'avons qu'un point M.
Prenons donc un nombre h au hasard et plaçons sur la courbe le point N d'abscisse a+h.




Les points M et N ont pour coordonnées :

M (a, f (a))
N(a+ h, f (a+ h))

La droite (MN) a donc pour coefficient directeur :

f (a+ h) - f (a) f (a+ h) - f (a)
c= =
(a+ h) - a h




Page
5,49 €
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
vivin02pro

Document également disponible en groupe

Thumbnail
Package deal
Pack Mathématiques - Licence Gestion
-
8 2023
€ 43,92 Plus d'infos

Faites connaissance avec le vendeur

Seller avatar
vivin02pro Montpellier I
Voir profil
S'abonner Vous devez être connecté afin de pouvoir suivre les étudiants ou les formations
Vendu
0
Membre depuis
2 année
Nombre de followers
0
Documents
8
Dernière vente
-

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions