Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Autre

Karteikarten zum Lernen von linearer Algebra für das erste Semester

Note
-
Vendu
-
Pages
50
Publié le
25-05-2022
Écrit en
2020/2021

Das Karteikartenset enthält 99 Fragen und Antworten zur linearen Algebra im praktischen PDF Dateiformat.

Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
25 mai 2022
Fichier mis à jour le
25 mai 2022
Nombre de pages
50
Écrit en
2020/2021
Type
Autre
Personne
Inconnu

Sujets

Aperçu du contenu

Lineare Algebra #1 Gruppen Lineare Algebra #2 Gruppen




Was versteht man unter einer Gruppe? Wann Was versteht man unter der Ordnung einer
heißt eine Gruppe abelsch? endlichen Gruppe G?




© 2022 © 2022
Lineare Algebra #3 Gruppen Lineare Algebra #4 Gruppen




Was versteht man unter Permutationen? Wie wird die Gruppe der Permutationen von n
Elementen bezeichnet?




© 2022 © 2022

,#2 Antwort #1 Antwort

Die Ordnung von G ist die Kardinalität der Menge G und wird mit Eine Gruppe ist eine nichtleere Menge G mit einer Verknüpfung ◦, die
|G| bezeichnet. Ist |G| endlich, so ist die Ordnung von G die Anzahl der zwei Elementen aus G ein Element aus G zuordnet: ◦ : G × G → G mit
Elemente in G. Im anderen Fall ist die Ordnung von G unendlich. folgenden Eigenschaften:

1. ∀ a, b, c ∈ G : (a ◦ b) ◦ c = a ◦ (b ◦ c) (Assoziativität)

2. ∃ e ∈ G : ∀ a ∈ G : e ◦ a = a (Existenz eines links-neutralen
Elementes

3. ∀ a ∈ G : ∃ b ∈ G : b ◦ a = e (Existenz eines links-inversen Elemen-
tes)

Das inverse Element zu a wird mit a−1 bezeichnet.

Eine Gruppe mit a ◦ b = b ◦ a für alle a, b heißt kommutativ bzw. Abelsche
Gruppe.




#4 Antwort #3 Antwort

Die Gruppe der Permutationen von n Elementen wird mit Sn bezeichnet Die bijektiven Abbildungen einer endlichen Menge auf sich selbst nennt
(exakt (Sn , ◦)). man Permutationen.

,Lineare Algebra #5 Gruppen Lineare Algebra #6 Gruppen




Wie ist die Untergruppe U einer Gruppe G Welche Ordnung hat die Gruppe Sn?
definiert?




© 2022 © 2022
Lineare Algebra #7 Gruppen Lineare Algebra #8 Gruppen




Wie ist die alternierende Gruppe An Was sind Links- bzw. Rechtsnebenklassen
definiert? und was ist ein Normalteiler?




© 2022 © 2022

, #6 Antwort #5 Antwort

Eine Permutation einer n-elementigen Menge lässt sich auf n! ver- Sei (G, ◦) eine Gruppe und U eine nichtleere Teilmenge von G, so dass
schiedene Arten festlegen: Für das Bild des ersten Elements hat man n (U, ◦) auch eine Gruppe ist. Dann heißt U Untergruppe von G.
Möglichkeiten, für das zweite noch n − 1 Möglichkeiten usw. Schließlich
bleibt für das Bild des letzten Elements nur noch eine Möglichkeit übrig.
Die Gruppe Sn hat somit die Ordnung n!.




#8 Antwort #7 Antwort

Sei U eine Untergruppe von (G, ◦). Dann sind die Familien {x · U |x ∈ G} Die alternierende Gruppe An ist die Menge aller geraden Permutationen
und {U · x|x ∈ G} Partitionen von G. Diese nennt man Links- bzw. Rechts- von n Elementen. Das ist eine Untergruppe der symmetrischen Gruppe.
nebenklassen. Die Anzahl dieser Nebenklassen heißt Index [G : U ] der
Untergruppe. U heißt Normalteiler, wenn Links- und Rechtsnebenklassen
übereinstimmen.
5,99 €
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
Mathematiker

Faites connaissance avec le vendeur

Seller avatar
Mathematiker Universität Siegen
S'abonner Vous devez être connecté afin de pouvoir suivre les étudiants ou les formations
Vendu
0
Membre depuis
3 année
Nombre de followers
0
Documents
3
Dernière vente
-

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions