Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Summary Design and Analysis of Experiments (BMS14)

Note
-
Vendu
8
Pages
22
Publié le
03-02-2022
Écrit en
2021/2022

Summary of all lectures and relevant literature, self-studies and practicals.

Établissement
Cours










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
3 février 2022
Nombre de pages
22
Écrit en
2021/2022
Type
Resume

Sujets

Aperçu du contenu

Introduction and overview of experimental design
Independent variable: the groups in an experiment are more or less comparable due to
randomization but we make a difference on one (or a few) relevant variables (e.g. age,
gender, …)
Dependent variable: we compare the group on a relevant outcome variable ( it is assumed
that this variable is continuous (with an approximate normal distribution) so we will be
comparing means
ANOVA: looking at differences between means
→ the only differences between 2 experimental groups are by chance (due to
randomization)
Good experimental design: use 2 groups (one is control) made by randomization

Benefits of good experimental design
- Isolates the treatment effect if interest from confounders
- reduces bias
- controls precision
- minimizes and quantifies random error or uncertainty
- simplifies and validates the analysis
- increases the external validity
external validity: is it possible to see the found effects of the experiment in a real-life setting

Studies with humans vs. non-humans
- Human responses to treatments and interventions tend to be more variable; the
investigator in experiments with humans cannot control as many sources of variability
through design as can be done in the lab
- Human experiments tend to need larger numbers of participants to control this
random variation
- Experiments with nonhuman subjects tend to involve fewer constraints (ethics,
consent, etc.)
- Not generally possible to recruit and observe all subjects in human studies
simultaneously, as might be done in nonhuman trials
- Some design differences, and tend to be longer studies

Randomized control trial (RCT): a special type of study mostly into the effect of a
certain drug/intervention → mostly in a regulatory context, with special rules
(ICH-E9)
Randomization tests: keep even closer to the general principle of randomization than
ANOVA
- nowadays, randomization studies are more often used (used to be very computer-
intensive) but ANOVA is still used a lot as it is easier and the outcomes are more or
less the same under general assumptions

Analysis of variance (ANOVA)
- basically a t-test
- comparing MEANS of more than two treatments/interventions
- null-hypothesis (population means amongst all groups are equal) needs to be
rejected

, - our hypothesis: (not all) population means are equal




With K=number of groups, N=number of measures (total, off all groups combined)
SS between: deviance of the treatment means around the overall mean → sum of
all estimated effects times the number of measures
SS within: error variance based on all the observation deviations from their appropriate
treatment means
SS total: total variance based on all the observation deviations from the grand mean
estimated effect:




F ratio: around 1 when there is no effect and bigger than 1 when there is an effect
→ between variance estimate needs to be bigger than within variance estimate
p-value: the probability of observing an F value greater than or equal to the one
obtained GIVEN that the null hypothesis is true → the smaller the p-value the
greater the support for rejecting the null hypothsis (and concluding that not all
population means are equal)

Reporting of the results
- try to avoid terms like ‘statistically significant’
- Estimate of effect: point estimate with direction and confidence interval (where
relevant) For ANOVAs when you have more than two groups but you could report
group means and use a method of multiple comparisons that produces confidence
intervals for these pairwise comparisons.
- Supporting statistics: test statistic (e.g. F-statistic for ANOVA), degrees of freedom
(e.g. between group df and within group df for ANOVA), and the P-value. The exact
P-value should be reported, unless the evidence is strong (i.e. P = 0.03 is good and
P < 0.001 is also acceptable)

, Three assumptions of ANOVA
- independance of errors: you assume that the outcomes of different people
in a group do not depend on each other → can be prevented a bit by
randomization
- equal error variance across treatment/groups (also known as homogeneity
of variance assumption) → the red line should be around zero except for
when there is a trechter vorm




- normality of errors → groups should be equally large to prevent this




- QQ plot is used to see if all errors combined form a normal distribution

ANCOVA
- extension of ANOVA to incorporate a continuous covariate (eg baseline)
- another way of reducing the noise term by accounting for individual differences that
are present
- use linear regression models to support the interpretation of the treatment effect
4,49 €
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
kimvandenbroek83 Radboud Universiteit Nijmegen
S'abonner Vous devez être connecté afin de pouvoir suivre les étudiants ou les formations
Vendu
37
Membre depuis
4 année
Nombre de followers
18
Documents
13
Dernière vente
2 semaines de cela

4,5

2 revues

5
1
4
1
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions