Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Autre

Concepts and Operations in n-dimensional Euclidean Space

Note
-
Vendu
-
Pages
45
Publié le
26-09-2021
Écrit en
2021/2022

For every natural number n we define n-dimensional space as the set Rn of all ordered n-tuples x1 x2  xn where xi  R for i  1 2  n. One-dimensional space R1 corresponds with the set of real numbers R. For n  2 we usually denote the ordered n-tuple x1 x2     xn by x, the ordered n-tuple a1 a2     an by a, and so on. If x  x1 x2  xn, we say that xi is the i’th coordinate of x In the case of R2 and R3 we often write x y instead of x1 x2, and x y z instead of x1 x2 x3, and we say that x y and z are, respectively, the x-, y- and z-coordinates of x y z Some text books use boldface x instead of x. In this unit we provide Rn with the necessary structure to enable us to do Calculus in Rn For example, we need to define addition and multiplication in Rn and also a concept of distance in Rn These concepts will have their usual geometric meaning in R1 R2 and R3

Montrer plus Lire moins
Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours

Infos sur le Document

Publié le
26 septembre 2021
Nombre de pages
45
Écrit en
2021/2022
Type
Autre
Personne
Inconnu

Sujets

Aperçu du contenu

4


1.3 RELATIONS AND FUNCTIONS




relation Definition 1.3.1 Given sets A and B, a relation R between A and B is a subset of A B. If
.a; b/ 2 R; we write a Rb and we say a is related to b.




Example 1.3.2

Consider those points .x; y/ in the plane R2 which are related by the condition that

x 2 C y 2 D 4:
p
We note that some values of x are related to more than one value of y; e.g. 1 is related to 3
p p 2 p 2
as well as to 3; since .1/2 C 3 D 4 and .1/2 C 3 D 4. A relation where such a
situation does not occur, is called a function.


function
Definition 1.3.3 A function f : A ! B is a relation between two sets A and B with the property
that, for every a 2 A there exists one and only one element b 2 B such that .a; b/ 2 f:
If .a; b/ 2 f we write f .a/ D b and we say b is the image of a under f , or f maps a to b:




Examples 1.3.4

1. The relation R D .x; y/j x 2 C y 2 D 4; x 2 [ 2; 2]; y 2 [ 2; 2] is not a function since,
p p
as we have seen in Example 1.3.2, 1; 3 2 R and .1; 3/ 2 R:

2. The relation .x; y/j x 2 R; y 2 R; y D x 2 is a function, which we can write as

f : R ! R; f .x/ D x 2 :



domain Given a function f : A ! B, the set A is called the domain of f: The set of all b 2 B for which
there exists an a 2 A such that f .a/ D b is called the image (or the range) of f and is denoted
image by f .A/ : Thus
f .A/ D fb 2 B j f .a/ D b for some a 2 Ag :

We shall often define a function by means of a formula only (without specifying the domain). The
domain of the function is then assumed to consist of all elements for which the formula makes
sense. We denote the domain of f by D f .

, 5 MAT2615/1


Example 1.3.5

Let f be the function defined by
1
f .x/ D :
x
1
Since x
exists for every real number x except for x D 0, the domain of f is the set

Df D R f0g:


Two functions f and g are said to be equal if D f D Dg and f .x/ D g .x/ for every x 2 D f :

Suppose f and g are functions such that Dg D f and g .x/ D f .x/ for every x 2 Dg : Then we restriction
say g is a restriction of f and f is an extension of g: extension

If g is a restriction of f and Dg D A, we say g is f restricted to A and we write

g D f jA:




Consider a function f : A ! B: If the image of A under f is B, then we say that f maps A onto
B. Let us define this concept precisely.



Definition 1.3.6 A function f : A ! B is said to map A onto B if for each b 2 B there is at least onto
one a 2 A such that f .a/ D b; in other words, the equation f .x/ D b has at least one solution.




Remark 1.3.7

A function always maps its domain onto its image.

Given a function f : A ! B, it is often important to be able to determine an a such that f .a/ D b,
for a prescribed b, and to ascertain whether there is only one such value of a. If f maps A onto
B, we know there is at least one such a in A. If there is at most one such a, we say that f is
one-to-one.



Definition 1.3.8 A function f : A ! B is called one-to-one if f .x/ D f .y/ implies that x D y. one-to-one

, 6


Examples 1.3.9

1. Consider the function
f : R ! R; f .x/ D sin x:

The function f maps R into R, but it does not map R onto R since there is, for example ,
no real number x such that sin x D 2:
The image of f is the interval [ 1; 1]. Thus f maps R onto [ 1; 1].
Furthermore, f is not one-to-one, because for each b 2 [ 1; 1] the equation sin x D b has
infinitely many solutions in R:

2. Consider the function

g:[ ; ] ! [ 1; 1]; g .x/ D sin x:
2 2
The function g is a restriction of the function f given in the previous example. It maps the
interval [ 2 ; 2 ] onto the interval [ 1; 1]: Moreover, g is one-to-one, because if
b 2 [1; 1]; the equation sin x D b has one and only one solution in the interval [ 2 ; 2 ];
(namely x D sin 1 b).




It is often useful to compose two functions f and g by first applying g and then applying f to the
output of g.



f g Definition 1.3.10 The composition of two functions f and g (in that order) is the function f g
defined by
. f g/ .x/ D f .g.x//:

The domain of f g consists of all x in the domain of g for which . f g/ .x/ is meaningful.




Remarks 1.3.11

1. If g maps the set A onto the set B and f maps B onto the set C, then f g maps A onto C.
The diagram below illustrates this situation.

g f
A B C


f g

2. For f .g.x// to be defined, g.x/ has to be defined, so x has to be in the domain of g:
Furthermore, f .g.x// has to be defined, so g.x/ has to be in the domain of f:

, 7 MAT2615/1


3. The function g f is usually not the same as the function f g:

Example 1.3.12

Consider the functions f and g given by
p
f .x/ D x and g.x/ D x 2 :

Now
p
.f g/ .x/ D f .g.x// D f x 2 D x 2 D jxj

and
p p 2
.g f / .x/ D g. f .x// D g x D x D x:

Since g.x/ is defined for all x 2 R and f .x 2 / is defined for all x 2 R; the domain of f g is R:
Since f .x/ is defined only for x 0 and g. f .x// is defined for every real number x 0, the
domain of g f is fx 2 R j x 0g :

With each set A we associate a special function, called the identity map on A. This is the function
that maps every element of A to itself.



Definition 1.3.13 The identity map on a set A is the function I A : A ! A defined by identity map

I A .a/ D a for every a 2 A:



The notion of an identity map now allows us to define inverses of certain functions.



Definition 1.3.14 A function f : A ! B has an inverse g : B ! A if
inverse func-
g f D I A and f g D IB : tion



Thus the functions f : A ! B and g : B ! A are inverses of one another if

.g f / .a/ D a for all a 2 A and . f g/ .b/ D b for all b 2 B:
2,64 €
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
AXIOMATIK

Faites connaissance avec le vendeur

Seller avatar
AXIOMATIK University of Cape Town
S'abonner Vous devez être connecté afin de pouvoir suivre les étudiants ou les formations
Vendu
1
Membre depuis
4 année
Nombre de followers
1
Documents
8
Dernière vente
4 année de cela

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions