Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Autre

correction td sur les complexes

Note
-
Vendu
-
Pages
16
Publié le
13-09-2021
Écrit en
2020/2021

correction td sur les complexes











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
13 septembre 2021
Nombre de pages
16
Écrit en
2020/2021
Type
Autre
Personne
Inconnu

Aperçu du contenu

Travaux dirigés - Complexes


Chaque feuille de TD correspond à un cours en amphi et se décompose de la façon suivante :
– les pré-requis à connaître avant de s’attaquer aux exercices (et donc avant de venir en TD),
– les objectifs d’apprentissage des exercices présents dans la feuille,
– des exercices classiques qu’il convient de savoir faire après le TD,
– des exercices complémentaires qui peuvent remplacer ou compléter les exercices classiques.

À l’issue du TD, il est primordial de vérifier que les objectifs d’apprentissage ont bien été acquis et que les
exercices classiques ont été compris. Les exercices proposés en complément permettent de s’entraîner en dehors
du TD, seul ou en groupe, de façon à consolider les compétences acquises. Ils peuvent également être vus en TD et
remplacer un exercice classique lorsque l’enseignant trouve cela pertinent.

Il est aussi possible de s’exercer en travaillant sur des livres d’exercices disponibles à la Bibliothèque Univer-
sitaire. Les références présentes dans le polycopié de cours proposent en général un grand nombre d’exercices
corrigés.

Les exercices marqués par le symbole  sont des exercices pour lesquels l’aspect raisonnement l’emporte sur
l’aspect calculatoire.

Il est inutile de lire ou d’apprendre la correction d’un exercice sans avoir pris le temps d’y réfléchir. Ces
corrections sont là pour vous permettre de vérifier vos résultats et vous donner des idées de rédaction. Faites
cependant attention au fait que les exercices ne sont pas tous corrigés de façon détaillée. Merci de signaler à votre
enseignant toute erreur que vous trouverez.




1

, 2


TD n°10


Pré-requis : Objectifs :
– calcul algébrique, valeur absolue dans R – savoir calculer le module d’un nombre complexe
– écriture algébrique d’un nombre complexe – interpréter géométriquement un nombre complexe
– trigonométrie – effectuer les calculs algébriques avec des nombres
– application, bijection complexes


Exercice 1

Écrire les nombres complexes suivants sous la forme algébrique.
3−i i(1 + i)
z1 = , z3 = ,
3 + 5i 3 + 4i
4i (1 + i)4
z2 = , z4 = p .
i−4 ( 3 − i)6


Exercice 2

Résoudre les équations suivantes. Les solutions seront écrites sous la forme algébrique.
(E 1 ) : 3 z + 5i = i z − 8, (E 3 ) : z + 8 + i = 5i + 1 − z,
z+1
(E 2 ) : = 5i pour z 6= i, (E 4 ) : i z + 5 z = 8 − i.
z−i


Exercice 3. Raisonnement par analyse-synthèse 

Résoudre dans C, (
| z + 1| É 1,
| z − 1| É 1.



Compléments


Exercice 4

Écrire les nombre complexes suivants sous la forme algébrique :
p
−4 2+i 3 + i 1 − 2i
p , p , + .
1+i 3 1−i 2 5 − i 1 + 5i


Exercice 5
n
z k = 1 + z + z2 + · · · + z n .
X
1. Calculer la somme S n =
k=0
Xn
2. Calculer la somme S n = kz = z + 2 z + 3 z + · · · + nz.
k=0



Exercice 6. 

Démontrer que

∀ z1 , z2 ∈ C, Re( z1 z2 ) É | z 1 |2 + | z 2 | 2 .
¢
2

, 3


Solution de l’exercice 1
1 z̄ 2
On utilise ici le fait que = 2 et que | z| = z z̄. Ainsi, on a
z | z|

3−i 1 3 − 5i 9 − 5 − i(3 + 15) 4 − 18i 2 − 9i
z1 = = (3 − i) = (3 − i) = = = .
3 + 5i 3 + 5i (3 + 5i)(3 − 5i) 32 + 52 34 17

De la même façon, on trouve
4i(−i − 4) 4 − 16i
z2 = = ,
(−4)2 + 12 17
1+7i 1
puis z3 = 25 et z4 = 16 .


Solution de l’exercice 2
La première équation se réécrit (3 − i) z = −8 − 5i. On trouve ainsi z = − 83+−5ii = − 10
19
− 23
10 i.
Pour (E 2 ), on se place dans le cas où z 6= i. En multipliant chaque membre par z − i, on se ramène à l’équation
2
z + 1 = 5i z + 5 et on finit par trouver z = 1−45i = 13 + 10
13 i. Le z ainsi obtenu est différent de i et il donne donc une
solution de l’équation (E 2 ).
L’équation (E 3 ) peut être réécrite sous la forme z + z̄ = −7 + 4i. Or, le nombre z + z̄ = 2 Re( z) est toujours un nombre
réel, l’équation (E 3 ) n’a donc pas de solution dans C.
En notant z = x + i y avec x, y ∈ R, on a z̄ = x − i y et l’équation (E 4 ) s’écrit alors (5 x − y) + ( x − 5 y)i = 8 − i. Par
identification des parties réelles et imaginaires, l’équation (E 4 ) est équivalente au système
(
5x − y = 8
x − 5 y = −1

41 13 41
qui admet pour solution x = 24 et y = 24 , autrement dit z = 24 + 13
24 i.


Solution de l’exercice 3
Notons z = a + i b. En élevant les inéquations au carré, nous obtenons
(
a2 + 2a + 1 + b2 = (a + 1)2 + b2 É 1,
a2 − 2a + 1 + b2 = (a − 1)2 + b2 É 1.

Ainsi (
a2 + b 2 É −2a,
a2 + b 2 É 2a.

Que a soit positif ou négatif, on en déduit que a2 + b2 É 0, donc que a = b = 0. Le seul z qui pourrait vérifier les
deux inéquations est donc z = 0.
Nous pouvons vérifier que 0 vérifie les deux inéquations et nous concluons donc que la seule solution du système
est 0.
Tracer les ensembles géométriques représentés par chaque inéquations et confirmer votre réponse.
6,49 €
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
emmasoares

Faites connaissance avec le vendeur

Seller avatar
emmasoares Toulouse III - Université Paul Sabatier
Voir profil
S'abonner Vous devez être connecté afin de pouvoir suivre les étudiants ou les formations
Vendu
1
Membre depuis
4 année
Nombre de followers
1
Documents
7
Dernière vente
4 année de cela

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions