Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

Metric Space Topology: Examples, Exercises and Solutions (Cheung, 2024)

Note
-
Vendu
-
Pages
428
Qualité
A+
Publié le
12-01-2026
Écrit en
2025/2026

INSTANT DOWNLOAD PDF — Metric Space Topology: Examples, Exercises and Solutions* (2024) by Wing-sum Cheung provides rigorous, step-by-step answers to a wide range of problems in metric spaces, open and closed sets, convergence, continuity, compactness, completeness, and connectedness. Designed for undergraduate and graduate students in mathematics, it’s a clear and structured companion for mastering the foundations of topology through applied examples. metric space topology solutions, wing-sum cheung 2024 answers, topology examples and exercises, compactness and continuity problems, convergence in metric spaces, mathematical analysis solutions, open and closed sets exercises, topology for undergraduates, metric space solved problems, advanced math textbook solutions #Topology, #MetricSpaces, #MathSolutions, #WingSumCheung, #AdvancedMathematics, #MathematicalAnalysis, #TopologyExercises, #GraduateMathematics, #TextbookSolutions, #PureMath

Montrer plus Lire moins
Établissement
Pathophysiology
Cours
Pathophysiology











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Pathophysiology
Cours
Pathophysiology

Infos sur le Document

Publié le
12 janvier 2026
Nombre de pages
428
Écrit en
2025/2026
Type
Examen
Contenu
Questions et réponses

Sujets

Aperçu du contenu

, Contents


Preface vii

A Note on the Convention xi
About the Author xiii

1. Metric Spaces 1
1.1 Definitions and Examples .............................................................. 1
Exercise 1.1: Part A ..................................................... 10
Exercise 1.1: Part B ..................................................... 14
1.2 Topology of Metric Spaces.......................................................... 36
Exercise 1.2: Part A ..................................................... 50
Exercise 1.2: Part B ..................................................... 64
1.3 Compactness ................................................................................ 85
Exercise 1.3: Part A ..................................................... 90
Exercise 1.3: Part B ..................................................... 94
1.4 Compactness in the Euclidean Space Rn ...................................................... 108
Exercise 1.4: Part A ................................................... 115
Exercise 1.4: Part B ................................................... 118

2. Limits and Continuity 129
2.1 Convergence in a Metric Space..................................................129
Exercise 2.1: Part A ................................................... 134
Exercise 2.1: Part B ................................................... 138
2.2 Complete Metric Spaces.............................................................145
Exercise 2.2: Part A ................................................... 150
Exercise 2.2: Part B ................................................... 155
2.3 Continuity and Homeomorphism ...............................................172
Exercise 2.3: Part A ................................................... 193
Exercise 2.3: Part B ................................................... 204

3. Connectedness 233
3.1 Connectedness.............................................................................233
Exercise 3.1: Part A ................................................... 245
Exercise 3.1: Part B ................................................... 249


Xv

,Xvi Metric Space Topology: Examples, Exercises and Solutions


3.2 Path-connectedness .................................................................... 266
Exercise 3.2: Part A.................................................... 278
Exercise 3.2: Part B.................................................... 281

4. Uniform Continuity 295
4.1 Uniform Continuity .................................................................... 296
Exercise 4.1: Part A.................................................... 301
Exercise 4.1: Part B.................................................... 309
4.2 Contraction and Beach’s Fixed Point Theorem...................... 322
Exercise 4.2: Part A.................................................... 330
Exercise 4.2: Part B.................................................... 332

5. Uniform Convergence 349
5.1 Sequence of Functions ................................................................ 349
Exercise 5.1: Part A.................................................... 368
Exercise 5.1: Part B.................................................... 377
5.2 Series of Functions ..................................................................... 389
Exercise 5.2: Part A.................................................... 395
Exercise 5.2: Part B.................................................... 401

Bibliography 421

Index 423

, Chapter 1

Metric Spaces

In this chapter, the basic concept of metric spaces will be introduced.
Naively, they are simply nonempty sets equipped with a structure
called metric. For the less matured students, at the beginning, this
structure may appear to be a bit abstract and difficult to master.
But in practice, this seemingly new concept is nothing more than
a tiny little abstractization of the familiar space Rn and so all one
needs to do is that whenever one needs to work on a problem in an
abstract metric space, one first looks at the problem on Rn, then one
would be able to see the clue of how to proceed in the general case.
In fact, in general, the most effective way to master a new concept
in any branch of mathematics is to keep in mind a couple of typical
concrete examples and think of these examples all the time. It is just
that easy.


1.1 Definitions and Examples
Definition 1.1.1. Let X be a nonempty set. A metric ton X is a
real-valued function
D: X × X → R
Satisfying
(M1) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y,
(M2) (Symmetry) d(x, y) = d(y, x),
(M3) (Triangle inequality) d (x, y) ≤ d(x, z) + d (z, y)
For all x, y, z ∈ X. Given x, y ∈ X, d(x, y) is also known as the
distance between x and y with respect to do. The pair (X, d) is
called a metric space and elements in X are referred to as points in
X. For the sake of convenience, in case there is a clearly defined
metric d on X, we shall simply call X a metric space.


1
34,04 €
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
LECTJULIESOLUTIONS Havard School
S'abonner Vous devez être connecté afin de pouvoir suivre les étudiants ou les formations
Vendu
14
Membre depuis
1 année
Nombre de followers
1
Documents
443
Dernière vente
2 jours de cela
JULIESOLUTIONS ALL STUDY GUIDES

You will get solutions to all subjects in both assignments and major exams. Contact me for any assisstance. Good luck! Simple well-researched education material for you. Expertise in Nursing, Mathematics, Psychology, Biology etc,. My Work contains the latest, updated Exam Solutions, Study Guides, Notes 100% verified Guarantee .

5,0

3 revues

5
3
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions