Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4,6 TrustPilot
logo-home
Examen

NYSTCE CST 245 ALL 2026 CORE EXAM TEST QUESTIONS AND ANSWERS GUARANTEE A+

Note
-
Vendu
-
Pages
22
Qualité
A+
Publié le
07-01-2026
Écrit en
2025/2026

NYSTCE CST 245 ALL 2026 CORE EXAM TEST QUESTIONS AND ANSWERS GUARANTEE A+

Établissement
NYSTCE CST 245
Cours
NYSTCE CST 245










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
NYSTCE CST 245
Cours
NYSTCE CST 245

Infos sur le Document

Publié le
7 janvier 2026
Nombre de pages
22
Écrit en
2025/2026
Type
Examen
Contenu
Questions et réponses

Sujets

Aperçu du contenu

NYSTCE CST 245 ALL 2026 CORE EXAM TEST QUESTIONS
AND ANSWERS GUARANTEE A+
✔✔Text comprehension - ✔✔the reason for reading: understanding what is read, with
readers reading actively (engaging in the complex process of making sense from text)
and with purpose (for learning, understanding, or enjoyment).

✔✔Vocabulary - ✔✔the words a reader knows. Listening vocabulary refers to the words
a person knows when hearing them in oral speech. Speaking vocabulary refers to the
words we use when we speak. Reading vocabulary refers to the words a person knows
when seeing them in print. Writing vocabulary refers to the words we use in writing.

✔✔Word parts - ✔✔include affixes (prefixes and suffixes), base words, and word roots.

✔✔Word roots - ✔✔words from other languages that are the origin of many English
words. About 60% of all English words have Latin or Greek origins.

✔✔reflexive property - ✔✔a segment or angle is always congruent to itself

✔✔segment bisection - ✔✔a point, segment, ray, or line that divides a segment into 2
congruent segments

✔✔midpoint - ✔✔the point where a segment is bisected; cuts the segment into 2
congruent parts

✔✔segment trisection - ✔✔two points, segments, rays, lines, or any combination
thereof that divide a segent into 3 congruent segments

✔✔angle bisection - ✔✔a ray that cuts an angle into 2 congruent angles

✔✔angle trisection - ✔✔2 rays that divide an angle between 3 congruent angles

✔✔theorem: complements of the same angle are congruent - ✔✔If 2 angles are each
complementary to a 3rd angle then they're congruent to each other.

✔✔theorem: complements of congruent angles are congruent - ✔✔If 2 angles are
complementary to 2 other congruent angles, then they're congruent.

✔✔theorem: supplements of the same angle are congruent - ✔✔If 2 angles are each
supplementary to a 3rd angle, then they're congruent.

✔✔theorem: supplements of congruent angles are congruent - ✔✔If 2 angles are
supplementary to 2 other congruent angles, then they're congruent.

,✔✔theorem: segment addition (3 total segments) - ✔✔If a segment is added to 2
congruent segment, then the sums are congruent

✔✔theorem: angle addition (3 total angles) - ✔✔If an angle is added to two congruent
angles, then the sums are congruent.

✔✔theorem: segment addition (4 total segments) - ✔✔If 2 congruent segments are
added to 2 other congruent segments, then the sums are congruent

✔✔theorem: angle addition (4 total angles) - ✔✔If 2 congruent angles are added to 2
other congruent angles, then the sums are congruent

✔✔theorem: segment subtraction (3 total segments) - ✔✔If a segment is subtracted
from 2 congruent segments, then the differences are congruent.

✔✔theorem: angle subtraction (3 total angles) - ✔✔If an angle is subtracted from 2
congruent angles, then the differences are congruent.

✔✔theorem: segment subtraction (4 total segments) - ✔✔If 2 congruent segments are
subtracted from 2 other congruent segments, then the differences are congruent.

✔✔theorem: angle subtraction (4 total angles) - ✔✔If 2 congruent angles are subtracted
from 2 other congruent angles, then the differences are congruent.

✔✔theorem: like multiples - ✔✔If 2 segments or angles are congruent, then their like
multiples are congruent.
EXAMPLE: If you have 2 congruent angles, then 3 times one angle will equal 3 times
the other angle.

✔✔theorem: like division - ✔✔If 2 segments or angles are congruent, then their like
divisions are congruent.
EXAMPLE: If you have 2 congruent segments, then 1/4 of one segment equals 1/4 of
the other segment.

✔✔postulate: substitution - ✔✔If 2 segments are equal to the same segment, then
they're equal to each other.

✔✔vertical angles - ✔✔When 2 lines intersect to form an "X", angles on the opposite
sides of the "X."

✔✔theorem: vertical angles are congruent - ✔✔If 2 angles are vertical angles, then
they're congruent.

, ✔✔transitive property (for 3 segments/angles) - ✔✔If 2 segments or angles are each
congruent to a 3rd segment or angle, then they're congruent to each other.
EXAMPLE: If ∠ A ≅ ∠ B, and ∠ B ≅ ∠ C, then ∠ A ≅ ∠ C

✔✔transitive property (for 4 segments/angles) - ✔✔If 2 segments or angles are
congruent to congruent to congruent segments or angles, then they're congruent to
each other.
EXAMPLE: Segment AB ≅ Segment CD, Segment CD ≅ Segment EF, and Segment
EF ≅ Segment GH, then Segment AB ≅ GH

✔✔substitution property - ✔✔If 2 geometric objects (segments, angles, triangles, etc.)
are congruent an you have a statement involving one of them, you can replace the one
with the other.
EXAMPLE: If ∠X ≅ ∠Y, and ∠Y is supplementary to ∠Z, then ∠X is supplementary to
∠Z.

✔✔triangle inequality principle - ✔✔the sum of the lengths of any 2 sides of a triangle
must be greater than the length of the 3rd side.

✔✔median of a triangle - ✔✔a segment that goes from one of the triangle's vertices to
the midpoint of the opposite side

✔✔centroid - ✔✔where the 3 medians of a triangle intersect; the triangle's balancing
point or center of gravity

✔✔incenter - ✔✔the point of concurrency of the three angle bisectors of a triangle

✔✔circumcenter - ✔✔where the 3 perpendicular bisectors of the sides of a triangle
intersect; the circumcenter is the center of a circle circumscribed about (drawn around)
the triangle

✔✔orthocenter - ✔✔where the triangle's 3 altitudes intersect

✔✔congruent triangles - ✔✔triangles in which all pairs of corresponding sides and
angles are congruent

✔✔theorem: side-side-side (SSS) - ✔✔If 3 sides of one triangle are congruent to 3
sides of another triangle, then the triangles are congruent

✔✔theorem: side-angle-side (SAS) - ✔✔If 2 sides and the included angle of one
triangle are congruent to 2 sides and the included angle of another triangle, then the
triangles are congruent
11,07 €
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
BOARDWALK Havard School
S'abonner Vous devez être connecté afin de pouvoir suivre les étudiants ou les formations
Vendu
182
Membre depuis
1 année
Nombre de followers
6
Documents
24136
Dernière vente
12 heures de cela
BOARDWALK ACADEMY

Ace Your Exams With Top Quality study Notes And Paper✅✅ ALL ACADEMIC MATERIALS AVAILABLE WITH US✅✅ LEAVE A REVIEW SO THAT WE CAN LOOK AND IMPROVE OUR MATERIALS.✅✅ WE ARE ALWAYS ONLINE AND AVAILABLE DONT HESITATE TO CONTACT US FOR SYUDY GUIDES!!✅✅ EVERYTHING IS GRADED A+✅✅ COLOUR YOUR GRADES WITH US , WE ARE HERE TO HELP YOU DONT BE RELACTANT TO REACH US

3,7

33 revues

5
14
4
6
3
7
2
0
1
6

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions