Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Complete samenvatting Polymeerchemie

Vendu
1
Pages
15
Publié le
24-09-2020
Écrit en
2019/2020

Dit document bevat een complete samenvatting van de te kennen examenleerstof voor het vak Polymeerchemie. De hoofdstukken 'polymeren in gecondenseerde toestand' en 'mechanische en andere relevante eigenschappen van polymeren: meetprincipes en trends' worden volledig besproken. Het document geeft een zeer overzichtelijke weergave van de leerstof en is zeer behulpzaam tijdens het studeren. Docent: P. Lommens

Montrer plus Lire moins













Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
24 septembre 2020
Nombre de pages
15
Écrit en
2019/2020
Type
Resume

Aperçu du contenu

Samenvatting Polymeerchemie
& Kunststoffentechnologie

,
,INHOUDSOPGAVE
INHOUDSOPGAVE ........................................................................................................................................5
1 Polymeren in de gecondenseerde toestand ..................................................................................6
1.1 Verschijningsvormen in functie van de temperatuur bij amorfe polymeren .................................6
1.1.1 Glastoestand................................................................................................................................................ 6
1.1.2 Glas-rubber overgang................................................................................................................................... 6
1.1.3 Rubbertoestand en rubber-vloeibaar overgang ............................................................................................ 7
1.1.4 Elasticiteitsmodulus-temperatuurcurve voor vernette polymeren ................................................................ 7
1.2 Kristallijne polymeren ...................................................................................................................7
1.2.1 Microstructuur van polymeren ..................................................................................................................... 7
1.2.2 Het kristallisatieproces ................................................................................................................................. 8
1.2.3 Macroscopische eigenschappen van kristallijne polymeren: log E ifv T .......................................................... 8
1.3 Methodes voor het bepalen van de glastransitie en smelttemperatuur .......................................9
1.3.1 Differentiële Scanning Calorimetrie – DSC .................................................................................................... 9
1.3.2 Dilatometrie of thermomechanische analyse – TMA ..................................................................................... 9
1.3.3 Dynamische mechanische thermische analyse – DMTA............................................................................... 10
1.3.4 Indirecte methodes die info geven over de thermische eigenschappen....................................................... 10
1.4 Visco-elastisch gedrag van polymeren......................................................................................... 10
1.4.1 Vloeibare toestand..................................................................................................................................... 10
2 Mechanische en andere relevante eigenschappen van polymeren: meetprincipes en trends..... 13
2.1 Mechanische eigenschappen....................................................................................................... 13
2.1.1 Trek-rek-proeven ....................................................................................................................................... 13
2.1.2 Stijfheid ..................................................................................................................................................... 14
2.1.3 Treksterkte ................................................................................................................................................ 15
2.1.4 Slagsterkte ................................................................................................................................................. 15
2.2 Oppervlakte-eigenschappen........................................................................................................ 16
2.2.1 Hardheid .................................................................................................................................................... 16
2.3 Thermische eigenschappen ......................................................................................................... 16
2.3.1 Brosheidstemperatuur ............................................................................................................................... 16
2.3.2 Verweking .................................................................................................................................................. 16
2.3.3 Thermische uitzetting & geleidbaarheid ..................................................................................................... 16
2.3.4 Brandgedrag .............................................................................................................................................. 16
2.4 Optische eigenschappen.............................................................................................................. 17
2.5 Resistentie................................................................................................................................... 17
2.5.1 Chemische resistentie ................................................................................................................................ 17
2.5.2 Ontleding en veroudering........................................................................................................................... 17
2.5.3 Diffusie en permeabiliteit ........................................................................................................................... 17

,1 Polymeren in de gecondenseerde toestand

1.1 Verschijningsvormen in functie van de temperatuur bij amorfe polymeren
Polymeer dat opgewarmd wordt doorloopt verschillende verschijningsvormen: glastoestand –
rubbertoestand – vloeistof.

Stijfheid = de kracht die nodig is om een bepaalde deformatie (vervorming) van het materiaal te
realiseren. Indien de vervorming een elongatie (uitrekking) is, dan spreken we van de
𝐹 𝑁
elasticiteitsmodulus van Young (E). 𝐸 = 𝐴∙𝜀 [𝑚2 𝑜𝑓 𝐺𝑝𝑎, 𝑀𝑝𝑎]

Overgang van glastoestand naar rubbertoe-
stand bij de glastemperatuur (Tg).

E vóór Tg in GPa gebied, erna in MPa gebied.

Overgang van rubbertoestand naar vloeistof bij
de vloeitemperatuur Tv.




1.1.1 Glastoestand
Geen rotaties mogelijk rond de bindingen tussen ketenatomen van de polymeerketen wegens gebrek
aan thermische energie. Wel mogelijk: kleine veranderingen in de afstand tussen atomen of atoomgroe-
pen (= stretch). Polymeren in glastoestand zijn stijf en weinig rekbaar.

Soms kan er een zekere bewegingsvrijheid ontstaan bij zijgroepen = secundaire glasovergang (bv PMMA)
wat vaak leidt tot verbeterde slagvastheid. (Zie figuur)


1.1.2 Glas-rubber overgang
Einde glastoestand = wanneer er rotaties rond de hoofdketens mogelijk zijn, dwz er is voldoende thermi-
sche energie

Invloed ketenflexibiliteit: Tg ↑ als R-groep > (rotatie gehinderd)
Invloed keteninteractiekrachten: Tg ↑ als polariteit R-groepen ↑ (intermoleculaire krachten ↑)
Invloed lengte zijketen: Tg ↓als zijketenlengte ↑ (afstand tot hoofdketen ↑) MAAR als daardoor de ste-
rische hinder toeneemt zal Tg ↑

Inwendige weekmaking = wanneer lange zijketens leiden tot een Tg ↓ (= same bij synthetische week-
makers)

Tg wordt NIET beïnvloed door de ketenlengte van de hoofdketen!

Vuistregel (vaak): Tk = Tg (K) x 2

,1.1.3 Rubbertoestand en rubber-vloeibaar overgang
Rubbertoestand wordt bereikt als ketensegmenten vrij kunnen bewegen / roteren maar de ketens blij-
ven wel ten opzichte van elkaar op dezelfde plaats.

Kracht uitgeoefend op materiaal = makkelijkere vervorm. E ↓ tot MPa gebied.

Indien T nog ↑ verdwijnen de ketenverstrengelingen en wordt Tv bereikt.

Tv is WEL afhankelijk van de ketenlengte van de hoofdketen!
Hoe langer de keten, hoe meer verstrengelingen met de naburige ketens, dus hoe hoger Tv

Bij polymeren met een laag Mw wordt de rubbertoestand soms zelfs geskipt


1.1.4 Elasticiteitsmodulus-temperatuurcurve voor vernette polymeren
Chemische vernetting blijft wel behouden bij T↑. De E van de rubbertoestand blijft behouden tot de
ontledingstemperatuur bereikt wordt.
Bij lage vernettingsgraad ligt E amper hoger dan
voor een niet-vernet polymeer (-------------------)

Bij hoge vernettingsgraad ligt E opmerkelijk ho-
ger (- - - - - - - - - - - - -)

Door de chemische vernetting worden de rota-
ties ook beperkt, waardoor Tg↑.




1.2 Kristallijne polymeren
Vorming van kristallen, geordend als statische polymeerkluwens
VW: polymeer moet voldoende regelmaat vertonen. Kristalliniteit heeft een grote invloed op de eigen-
schappen van een materiaal.


1.2.1 Microstructuur van polymeren
Primaire structuur: precieze sequentie van atomen in polymeerketen
Secundaire structuur: conformatie van de atomen
Tertiaire structuur: opvouwen van polymeerketens
Quaternaire structuur: groepering van tert. structuren in finale materiaal
Vertakte polymeren:
Aanwezigheid van zijketens (vertakkingen) als gevolg van de synthesemanier.

LDPE gesynthetiseerd met radicalaire vinylpolymerisatie onder hoge druk. Hierbij ontstaan soms kleine
zijketens tgv transferreacties (= vertakking). LDPE vouwt eerder willekeurig op.
HDPE gesynthetiseerd met coördinatieve vinylpolymerisatie mbv Ziegler-Natta katalysatoren. Vorming
van vertakkingen wordt onderdrukt, HDPE vouwt gemakkelijk op.
% kristalliniteit HDPE > LDPE

, Kristallijne gebieden zorgen voor hardheid maar introduceren brosheid. Amorfe zones zorgen voor ver-
vormbaarheid en taaiheid / sterkte.
Takticiteit – aanwezigheid van zijgroepen/substituenten:
Zijgroep  vertakking. Zijgroep komt al voor in het monomeer en is niet het resultaat van een nevenre-
actie tijdens de synthese van het polymeer.

Bij PP komt om de 2 C’s een CH3-groep voor. Dit C-atoom wordt chiraal.
Isotaktisch: alle methylgroepen staan
aan dezelfde kant van de
polymeerketen

Syndiotaktisch: de substituenten staan
afwisselend aan de ene en aan de
andere kant van de polymeerketen

Ataktisch: de substituenten zijn
statistisch verdeeld
Enkel isotaktisch PP zal kristallijn materiaal vormen dat bruikbaar is; de ataktische variant heeft geen
praktisch nut. De takticiteit wordt vastgelegd tijdens het polymerisatieproces.
Cis-trans configuratie:
Bv poly-cis-1,4-isopreen en poly-trans-1,4-isopreen. Beide komen in de natuur voor, maar hebben an-
dere eigenschappen.


1.2.2 Het kristallisatieproces
Er ontstaat periodiciteit door regelmatig opvouwen van de polymeerketens. De morfologie van de ge-
vormde kristallen hangt af van de kristallisatiecondities
Uit verdunde oplossingen:
Thermoplasten opgelost in een geschikt solvent. Solvent doen verdampen of toevoeging van een non-
solvent resulteert in kristallisatie van het polymeer tot dunne plaatvormige kristallieten (lamellen).
Uit de smelt:
Afkoelen van een gesmolten polymeer. Lamellaire kristallieten groeien van een kiem uit tot een sferu-
liet. In de praktijk voegt men vaak kiemvormers toe (= beter).


1.2.3 Macroscopische eigenschappen van kristallijne polymeren: log E ifv T
Kristallijne polymeren gedragen zich anders dan hun amorfe tegenhangers

Bij T↑ zal ook de Tg bereikt worden. Vanaf deze T gedraagt de amorfe fractie van dat polymeer zich als
een rubber. In de kristallijne fractie zijn nog geen rotaties mogelijk, dus wordt diens hoge E behouden.
Resultaat: E zal licht ↓. Hoe groter de fractie amorf materiaal, hoe groter die daling.

Uiteindelijk wordt Tm (smelttemperatuur) bereikt. De kristalliniteit verdwijnt. E↓ tot zijn amorf niveau.
Indien Tm > Tv ontstaat er een vloeibare massa bij Tm
Indien Tm < Tv wordt er eerst een rubberachtig gebied doorlopen
€7,99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Reviews from verified buyers

Affichage de tous les avis
2 année de cela

3,0

1 revues

5
0
4
0
3
1
2
0
1
0
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
MatthewHaes Katholieke Universiteit Leuven
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
43
Membre depuis
5 année
Nombre de followers
29
Documents
3
Dernière vente
11 mois de cela

3,4

5 revues

5
1
4
2
3
1
2
0
1
1

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions