Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting hoofdstuk 8 uit theorieboek van Moore & Mccabe

Vendu
1
Pages
7
Publié le
20-11-2019
Écrit en
2019/2020

Samenvatting hoofdstuk 8 uit theorieboek van Moore & Mccabe










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Livre entier ?
Non
Quels chapitres sont résumés ?
H8
Publié le
20 novembre 2019
Nombre de pages
7
Écrit en
2019/2020
Type
Resume

Aperçu du contenu

STATISTIEK N

4. INFERENTIE VOOR FRACTIES




INFERENTIE VOOR ENKELE FRACTIES

 We willen een schatting van de fractie p van elementen met een of ander kenmerk onder de
elementen van een grote populatie
 We kiezen een EAS van omvang n uit de populatie en noteren het aantal ‘successen’ X
 We zullen ‘succes’ hanteren als een aanduiding voor het kenmerk dat ons interesseert
 De steekproeffractie successen ^p= X /n schat de onbekende populatiefractie p
 Als de populatie veel groter is dan de steekproef, dan zijn de individuele reacties vrijwel onafhankelijk

en heeft het aantal X bij benadering de binomiale verdeling B(n , p)
 Als de steekproefomvang klein is, moeten we toetsen en betrouwbaarheidsintervallen voor p baseren
op de binomiale verdelingen
 Als de steekproef groot is, zal zowel het aantal X als de steeproeffractie ^p bij benadering normaal zijn
verdeeld

BETROUWBAARHEIDSINTERVAL VOOR EEN ENKELE FRACTIE

 De onbekende populatiefractie p wordt geschat door de steekproeffractie ^p= X /n
 We weten dat als de steekproefomvang voldoende groot is, de grootheid ^p bij benadering de normale
verdeling heeft met verwachting μ ^p= p en standaardafwijking σ ^p=√ p (1− p)/n
 Dit betekent dat ongeveer 95% van de tijd ^p binnen 2 √ p (1− p)/n van de onbekende
populatiefractie ligt
De standaardafwijking σ ^p is afhankelijk van de parameter p
 Om een betrouwbaarheidsinterval voor p te bepalen, moeten we de standaardafwijking van ^p uit de
data schatten
o Hiervoor moeten we p vervangen door ^p in de uitdrukking voor σ ^p




BETROUWBAARHEIDSINTERVAL VAN EEN GROTE STEEKPROEF VOOR EEN POPULATIEFRACTIE
Trek een EAS van omvang n uit een grote populatie met een onbekende succesfractie p .
De steekproeffractie is ^p= X /n waar X het aantal successen vertegenwoordigt.




1

, De standaardfout van ^p is
^p (1− ^p )
SE ^p=
√ n
En de foutmarge voor betrouwbaarheidsniveau C is
m=z ¿ SE ^p
waar z ¿ de waarde is voor de standaard dichtheidskromme met een oppervlak C tussen −z ¿ en z ¿
Het betrouwbaarheidsinterval voor niveau C voor p is bij benadering ^p ± m
Gebruik dit interval voor de 90%, 95%, of 99% betrouwbaarheid wanneer er sprake is van minstens 15
successen en 15 missers


SIGINIFICANTIETOETSEN VOOR ÉÉN FRACTIE
 De steekproeffractie ^p= X /n is normaal verdeeld, met verwachting μ ^p= p en standaardafwijking
σ ^p=√ p (1− p)/n

SIGNIFICANTIETOETS VOOR EEN POPULATIEFRACTIE OP BASIS VAN EEN GROTE STEEKPROEF
Trek een EAS van omvang n uit een grote populatie met onbekende succesfractie p . Om de hypothese


^p− p 0
z=
H 0 : p= p0 te toetsen, berekent men de z-grootheid p0 (1−p 0)
√ n
In termen van een standaardnormale stochastische variabele Z geldt voor de benaderde
overschrijdingskans van een toets van H0 versus
H a : p > p0 ; de overschrijdijngskans is P ( Z ≥ z )


H a : p < p0 ; de overschrijdingskans is P ( Z ≤ z )


H a : p ≠ p0 ; de overschrijdingskans is 2 P(Z ≥|z|)

 Steekproef z significantietoets gebruiken als het verwachte aantal successen (n p0 ) en het verwachte

aantal missers (n ( 1− p 0 )) beide groters zijn dan 10

 Conclusie hangt niet af van de keuze van succes en mislukking
BETROUWBAARHEIDSINTERVALLEN GEVEN AANVULLENDE INFORMATIE
 Significantietoetsen voor één enkele fractie komen in de statistiek betrekkelijk zelden voor, omdat het

ongebruikelijk is een exact gespecifieerde p0 te hebben


HET BEPALEN VAN DE STEEKPROEFOMVANG
¿
 Foutmarge voor een betrouwbaarheidsinterval van niveau C voor p is m=z S E ^p




2

Reviews from verified buyers

Affichage de tous les avis
5 année de cela

4,0

1 revues

5
0
4
1
3
0
2
0
1
0
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
kainysomers Katholieke Universiteit Leuven
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
21
Membre depuis
9 année
Nombre de followers
10
Documents
16
Dernière vente
3 année de cela

4,1

8 revues

5
1
4
7
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions