Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting hoofdstuk 6 uit theorieboek van Moore & Mccabe

Vendu
1
Pages
14
Publié le
20-11-2019
Écrit en
2019/2020

Samenvatting hoofdstuk 6 uit theorieboek van Moore & Mccabe










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Livre entier ?
Non
Quels chapitres sont résumés ?
H6
Publié le
20 novembre 2019
Nombre de pages
14
Écrit en
2019/2020
Type
Resume

Aperçu du contenu

STATISTIEK

3. INFERENTIE



 Bij formele inferentie ligt de nadruk op het onderbouwen van onze conclusies met kansberekeningen
 2 types
1. Betrouwbaarheidsintervallen
2. Significantietoetsen
beide methoden leveren kansen op die uitdrukken wat er zou gebeuren als we de inferentiemethode
vele keren zouden gebruiken
 Als u statistische inferentie gebruikt, handelt u alsof de gegevens afkomstig zijn uit een aselecte steekproef
of uit een gerandomiseerd experiment


SCHATTEN MET BETROUWBAARHEID

 X́ is een zuivere schatter van µ
 De wet van de grote aantallen zegt dat het steekproefgemiddelde moet naderen tot de
populatieverwachting als de steekproefomvang toeneemt
 Zuiverheid zegt alleen maar dat er geen systematische tendens is om de werkelijke waarde te overschatten
of te onderschatten

STATISTISCHE BETROUWBAARHEID


 Vragen omtrent variantie worden beantwoord door te kijken naar de spreiding
 De taal van de statistische inferentie gebruikt dit gegeven over wat er op de lange termijn zou gebeuren,
om ons vertrouwen uit te drukken in de resultaten van een enkelvoudige steekproef


BETROUWBAARHEIDSINTERVALLEN
 Vorm van de betrouwbaarheidsintervallen
schatting ± foutmarge
 De schatting is onze geschatte waarde voor de onbekende parameter
 De foutmarge laat zien hoeveel nauwkeurigheid wij onze schatting toekennen, gebaseerd op de
variabiliteit van de schatting
 Het betrouwbaarheidsniveau laat zien hoeveel vertrouwen wij erin hebben dat het interval de werkelijke
populatieverwachting µ zal bevatten




 Twee belangrijke dingen
1. Het is een interval van de vorm (a , b ), waarbij a en b getallen zijn die vanuit de data zijn berekend




1

, 2. Het interval heeft een eigenschap, een zogenoemd betrouwbaarheidsniveau, dat de waarschijnlijkheid
oplevert dat het interval de parameter bevat
 Gebruikers kunnen het betrouwbaarheidsinterval kiezen, maar in de meeste situaties is dat 95%
o Heel soms 90% of 99%
 Betrouwbaarheidsniveau wordt weergegeven door C


BETROUWBAARHEIDSINTERVAL
Een betrouwbaarheidsinterval van niveau C voor een parameter is een interval dat is berekend uit de
steekproefdata, volgens een methode die kans C heeft om een interval op te leveren dat de werkelijke
waarde van de parameter bevat.


BETROUWBAARHEIDSINTERVAL VOOR EEN POPULATIEGEMIDDELDE
 Getal Z* zoeken, zodanig dat elke normale verdeling met kans C binnen ±Z* standaardafwijkingen van zijn
verwachting ligt

Z* 1,645 1,960 2,576
C 90% 95% 99%

 Elke normale kromme heeft de kans C tussen het punt Z* standaardafwijkingen onder de verwachting en
het punt op Z* standaardafwijkingen boven de verwachting
σ
 Het steekproefgemiddelde X́ heeft de normale verdeling met verwachting µ en standaardafwijking
√n
o x́ ligt tussen
Daarom is de kans dat
¿σ ¿ σ
μ− z en μ+ z
√n √n
gelijk aan C


o Dat is precies hetzelfde als zeggen dat het onbekende populatiegemiddelde μ ligt tussen
σ σ
x́−z ¿ en x́+ z ¿
√n √n
z¿ σ
Dit wil zeggen: er is een kans C dat het interval x́ ± het gemiddelde μ bevat.
√n
z¿ σ
 De schatting van de onbekende μ en de foutmarge is
√n



BETROUWBAARHEIDSINTERVAL VOOR EEN POPULATIEGEMIDDELDE
Trek een EAS van omvang n uit een populatie met een onbekende gemiddelde μ en een bekende
standaardafwijking σ .De foutmarge voor een betrouwbaarheidsinterval van niveau C voor μ is
σ
m=z ¿
√n
Hierbij is z* de waarde voor de standaardnormale curve met oppervlakte C tussen de kritieke punten -z*
en z*. Het niveau C betrouwbaarheidsinterval voor μ is
x́ ± m
Dit interval is exact correct als de populatieverdeling normaal is en is in andere gevallen voor grote n bij
benadering correct




2

Reviews from verified buyers

Affichage de tous les avis
5 année de cela

4,0

1 revues

5
0
4
1
3
0
2
0
1
0
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
kainysomers Katholieke Universiteit Leuven
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
21
Membre depuis
9 année
Nombre de followers
10
Documents
16
Dernière vente
3 année de cela

4,1

8 revues

5
1
4
7
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions