Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting Introduction to Econometrics

Vendu
8
Pages
19
Publié le
11-12-2017
Écrit en
2017/2018

A summary of all solutions to the problem sets and lectures. It contains all the information you need to pass the exam

Établissement
Cours










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Livre entier ?
Oui
Publié le
11 décembre 2017
Nombre de pages
19
Écrit en
2017/2018
Type
Resume

Sujets

Aperçu du contenu

Hoorcollege week 1
Data types
- Cross-sectional data, one point in time but many measurements (units, like measures of households,
companies, districts and countries). This is especially useful to test economic theories on structural
relationships
- Time series data, a single or a few units collected at different point in time. Especially useful for
predictions of economic key figures.
- Panel data, Several units that are observed on at least two time points. A combination of cross-
sectional and time series data.

Simple linear regression
Y i=β 0 + β 1 X i+u i
Where Y is the dependent variable, X the independent variable,
β 0 the intercept, β 1 the slope and ui the regressor error.
The regression error consist of omitted components. These are the
other variables that influence Y other than X. It also includes errors in
the measurement of Y.

The sample mean
The least squares estimator of the population mean μY is the
sample mean:
n
min ∑ ( Y i−m )
2

m i=1

n
1
m=Ý = ∑ Y i
n i=1

How can we estimate the intercept and slope?
We will focus on the least squares estimator of the unknown parameters just like we did when calculating the
sample mean. We therefore have to solve:
n n
2 2
min ∑ ( Y i− Y^i ) =∑ ( Y i−( β 0 + β 1 X i))
β0 , β1 i=1 i=1
The OLS estimator minimises the average squared difference between the actual values and the predicted
values based on the estimated line.

The first order conditions for the intercept
n
∂ LS
=−2 ∑ Y i−( β 0+ β 1 X i )=0
∂ β0 i=1

n n

∑ (Y i)−n ^
β 0− ^
β 1 ∑ ( X i )=0
i=1 i=1



^ 1
n
β^1 n
β 0= ∑ (Y i)− ∑ ( X i )=Ý − ^
β 1 X́
n i=1 n i=1

The intercept doesn’t have content-related interpretation, if there are no observations where X=0. You can’t
make any conclusions outside your data range.

The first order conditions for the slope
n
∂ LS
=−2 ∑ ( Y i−( β 0 + β 1 X i ) ) X i=0
∂ β1 i=1

, n n n

∑ (Y i X i)− ^
β0 ∑ ( X i )− ^
β 1 ∑ ( X i )=0
2

i=1 i=1 i=1

n n n

∑ (Y i X i)−(Ý − ^β1 X́ )∑ ( X i )− β^1 ∑ ( X 2i )=0
i=1 i =1 i=1

n n n n

∑ (Y i X i)− Ý ∑ ( X i )− β^1 X́ ∑ ( X i ) = ^β1 ∑ ( X 2i )
i=1 i=1 i=1 i=1
n ^
n n n
1

n i=1
Ý β
(
( Y i X i)− ∑ ( X i )= 1 X́ ∑ ( X i ) + ∑ ( X 2i )
n i=1 n i =1 i=1
)
n n
1

n i=1
( Y i X i)−Ý X́ = ^
1
(
β 1 X́ 2 + ∑ ( X 2i )
n i=1 )
n
1
∑ (Y i−Ý )( X i− X́ ) n−1 s xy sample covariance
^
β 1= i=1 × = 2=
n
2 1 S x sample variance of x
∑ ( X i− X́ ) n−1
i=1



Residuals, the estimates of the unknown error terms
u^i=Y i −Y^i

Measures of fit
 R2 , measures the fraction of the variance of Y that is explained by X. It is unitless and ranges
between zero (no fit) and one (perfect fit). For a regression with a single X, the R squared equals the
square of the correlation coefficient between X and Y.

Y i=Y^i + u^i
s Y =sY^ +s u^ → s=sample variance
Total SS=Explained SS + Residual SS
n 2

ESS RSS i=1
∑ (Y^ i−Y^´ )
R2= =1− = n
TSS TSS 2
∑ (Y i−Ý )
i=1


Prove:
STEP 1
We assume the residuals in the linear regression model and the regressor values X i are orthogonal, which
means:
n

∑ u^i X i=0
i=1
This we can prove the following way

, X i − X́
u^i (¿)
n n

∑ u^i X i=∑ ¿
i=1 i=1
We also know
u^i=Y i − ^
β 0− ^
β 1 X i =Y i−( Ý − ^
β 1 X́ )− β^1 X i=( Y i−Ý ) − ^
β 1( X i− X́ )
Putting this in the function above we get
X i− X́
X i− X́
n
2
( Y i−Ý ) (¿)− β^11 ∑ ( X i− X́ )
i=1
n
( ( Y i− Ý )− β^1 ( X i− X́ ))( ¿)=∑ ¿
i=1
n

∑¿
i=1
X i− X́
( Y i−Ý ) (¿)
n n
^
β 1 ∑ ( X i− X́ ) =∑ ¿
i=1 i=1
s s xy
^
β 1= =^
β1
s2x
Which proves the assumption that the regressors and the residuals are orthogonal.

STEP 2




STEP 3
Prove
n n n

∑ u^i ( Y^i −Ý )=∑ u^i Y^i −Ý ∑ u^i
i=1 i=1 i =1
We know the summations of the residuals are equal to zero because the mean is equal to zero. So the formula
becomes:
n n
u^i (¿ ^
β0 + ^
β 1 X i )= β^0 ∑ u^i + ^
β 1 ∑ u^i X I =0
i=1 i=1
n

∑¿
i=1




R2 can be zero because of two reasons:
- ^
β 1=0 which makes the intercept equal to the average of Y, which leads to a SSE of 0
- X is a constant, which means that the variance of X is zero. This leads to a ^
β 1 that is
undefined.
€6,99
Accéder à l'intégralité du document:
Acheté par 8 étudiants

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Reviews from verified buyers

Affichage de tous les 4 avis
1 année de cela

11 mois de cela

6 année de cela

7 année de cela

4,0

4 revues

5
1
4
2
3
1
2
0
1
0
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
wandykalk Vrije Universiteit Amsterdam
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
80
Membre depuis
8 année
Nombre de followers
55
Documents
17
Dernière vente
1 année de cela

3,9

19 revues

5
3
4
12
3
4
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions