Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting Data Science 2 P4

Note
-
Vendu
1
Pages
51
Publié le
02-06-2023
Écrit en
2022/2023

Samenvatting data science 2 theorie van periode 4 aan Karel de Grote Hogeschool












Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
2 juin 2023
Nombre de pages
51
Écrit en
2022/2023
Type
Resume

Aperçu du contenu

DS 2
P4




KDG | 2022-23




1

, Inhoudsopgave
Inhoudsopgave 2
1. Discriminant analyse 4
1.1 Begrippen 4
1.2 Inleiding 4
1.3 Karakteristieken 5
1.3.1 Descriptieve discriminant analyse 5
1.3.2 Predictieve discriminant analyse 5
1.3.3 Veronderstellingen mbt de data 6
1.4 In Python 6
1.4.1 Descriptief 6
1.4.2 Predictief 6
2. Evaluatiemetrieken 8
2.1 Wat zijn evaluatiemetrieken? 8
2.2 Classi catie-metrieken 8
2.1 Binaire vs. Multi-class classi catie 8
2.2 Metrieken voor binaire en multi-class classi catie 9
2.2.1 Confusion matrix 9
2.2.2 Accuracy 10
2.2.3 Precision (P) 11
2.2.4 Recall (R) 12
2.2.5 F-measure (F) 13
2.2.6 Binaire en multi-class 13
2.3 Metrieken enkel voor binaire classi catie 15
2.3.1 TP rate & FP rate 15
2.3.2 Receiver Operator Characteristic Curve 15
2.3 Evaluatiemetrieken in python 18
3. Neurale netwerken 20
3.1 Wat is een neuraal netwerk? 20

2


fi fi fi fi

, 3.1.1 Activatie functie 21
3.1.2 Arti cieel neuraal netwerk 21
3.1.3 Voorbeeld XOR 23
3.2 Waar gebruik je een ANN binnen Data Science? 25
3.3 Hoe leert een ANN? 26
3.3.1 Normaliseren van data 32
3.4 ANN in Python 32
3.4.1 Te zetten stappen: 32
3.4.2 Voorbeeld XOR 33
3.4.3 ANN parameters 35
3.4.4 Voorbeeld MNIST 36
3.4.5 Voorbeeld Cereals US 38
4. Meta-heuristieken 40
4.1 Inleiding - optimalisatieproblemen 40
4.2 Algoritme versus heuristiek 42
4.1.1 Wat is een algoritme en wat is een heuristiek 42
4.1.2 Computationele complexiteit 42
4.3 Soorten heuristiek 43
4.3.1 ’Custom made’-heuristieken 43
4.3.2 Eenvoudige heuristieken 43
4.3.3 ‘Lokale zoek’-heuristieken 44
4.3.4 Meta-heuristieken 44
4.4 Simulated Annealing 45
4.5 T abu search 46
4.6 Genetische algoritmen 47
4.6.1 Stap 1 47
4.6.2 Stap 2 48
4.6.3 Stap 5 48
4.6.4 Stap 6 49
4.6.5 In python 51

3


fi

, 1. Discriminant analyse
1.1 Begrippen
Sta s sche technieken toepasbaar op
• 1 variabele = Univariate sta s ek
• 2 variabelen = Bivariate sta s ek
• meerdere variabelen = Mul variate sta s ek




A ankelijke variabele: variabele waarover (met behulp van een sta s sche techniek) een voorspelling of
uitspraak wordt gedaan —> gevolg
Ona ankelijke variabele: variabele is die gebruikt wordt om voorspellingen of uitspraken op te baseren
—> oorzaak

Groepen kunnen wederzijds uitsluitende groepen zijn, bv mannen en vrouwen of overlappende
deelgroepen zijn, bv vakken van verschillende jaren in uw studietraject




1.2 Inleiding
Behoort tot de mul variate sta s ek

Doel: voor een nieuw gegeven waarneming, te bepalen tot welke van een aantal gegeven groepen van
waarnemingen deze het best thuis hoort.

De a ankelijke variabele is de groep. De ona ankelijke variabelen zijn de gegevens die gebruikt worden
om tot de groep te komen

bv blauw geen overgewicht, bruin overgewicht

X-as is enkel gewicht: hieraan kunnen we niet zien of iemand
overgewicht hee : we hebben ook lengte nodig
—> overgewicht is a ankelijk van lengte: sommige van dat
gewicht wel overgewicht sommige niet: overlappend
—> als we enkel naar gewicht of lengte kijken hebben we
zeker overlapping, als we BMI berekenen door 2 door elkaar te
delen hebben we nog maar klein deel overlapping
—> hierdoor kunnen we zeggen als BMI kleiner is dan bepaald getal je geen overgewicht hebt, dit kunnen
we zeggen omdat ze (bijna) niet meer overlappen




4


fhtifh
fhti

ft tifh ti ti ti ti ti ti fh ti ti
€5,49
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
compie Karel de Grote-Hogeschool
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
27
Membre depuis
2 année
Nombre de followers
6
Documents
21
Dernière vente
2 mois de cela

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions