Samenvatting wiskunde 3de graad aso (3u)
kenmerken van reële functies: domein en bereik, eventuele nulwaarden en/of
extremawaarden, eventuele symmetrieën, stijgen, dalen of constant zijn,
tekenverandering
▪ Domein: intervalnotatie, de x-waarden waarvoor er functiewaarden bestaan
▪ Beeld/bereik: intervalnotatie, de oplossingen voor de x-waarden
▪ Nulpunten: de x-waarden waarbij de functiewaarden nul zijn
▪ Extremawaarden: maximum (M): het hoogst gedefinieerde Y-waarde van de functie f
Minimum (m): het laagst definieerde y-waarden van de functie f
▪ Stijgen/dalen: het functie stijgt, of het functie daalt
▪ Constante verloop: het functie blijft constant
▪ Tekenverandering van een functie: de functiewaarden zijn groter dan nul indien de functie
boven de X-as is, en negatief indien de functie onder de X-as is.
even en oneven functies: punt – en lijnsymmetrie: het soort symmetrie afleiden
uit de grafische voorstelling
▪ Even functies: functies waarvan de grafiek symmetrisch is t.o.v. de y-as
➔ F(-x)= f(x) bv. F(x)=x^2
▪ Oneven functies: functies waarbij de grafiek symmetrisch is t.o.v. de oorsprong
→ f(-x)= - f(x) Bv. F(x)=x^3
▪ Puntsymmetrie: puntspiegeling, spiegeling t.o.v. de oorsprong (0,0)= spiegeling t.o.v. de x en
y-as
▪ Lijnsymmetrie: spiegeling t.o.v. een rechte
ontbinden in factoren
▪ De bedoeling van ontbinden in factoren: de nulpunten van de gegeven functie aflezen en dus
in vele gevallen de vergelijking oplossen van een veeltermfunctie (ook toe te passen bij
ongelijkheden), na het ontbinden in factoren krijg je veel informatie over de functie zelf, je
kan zo een tekenschema en verloopschema opstellen.
▪ afhankelijke van de graad van de gegeven functie, ga je als volgt tewerk bij het ontbinden in
factoren:
1. je zondert de gemeenschappelijke factor af door deze buiten haakjes te plaatsen, indien
mogelijk (als er geen gemeenschappelijke factor is sla je deze stap over)
2. je kijkt vervolgens naar de graad van de gegeven functie:
− 2de graad functies: dat doe je met de discriminant (D= -4ac+b^2) :
• D<0 : er is geen oplossing voor de waarden van X (er zijn geen nulpunten, de
functiecurve snijdt de X-as niet.)
• D=0 : er is maar 1 nulpunt die twee keer voorkomt
• D>0: er zijn twee verschillende nulpunten en dus twee verschillende X-waarden:
➔ na Horner toe te passen krijg je een tweedegraadsfunctie, deze los je op met de
discriminant.
− Hogere graadfuncties: je past Horner toe, tot je een tweedegraadsfunctie krijgt, dan pas
je de regel van de discriminant toe.
afgeleiden
a) Verandering van een veeltermfunctie
▪ Verandering/differentie
de verandering of differentie van de functiewaarde f(x) over het interval [a,b] is het verschil
Δy
Δy= Δf(x)= f(b)-f(a)
De verandering of differentie Δx = b – a is de lengte of de stapgrootte van het interval [a,b]
waarover de verandering Δy gebeurt.
▪ Gemiddelde verandering en differentiequotiënt
, ▪ Gemiddelde helling en gemiddelde hellingshoek
1. Hellingsgetal:
2. Gemiddelde helling:
OPMERKING: De gemiddelde helling van de grafiek van f over [a,b] is ook de richtingscoëfficiënt van
de rechte door de punten A en B.
3. Hellingshoek
gemiddelde helling over [a,b] = helling AB = tanα
Les avantages d'acheter des résumés chez Stuvia:
Qualité garantie par les avis des clients
Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.
L’achat facile et rapide
Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.
Focus sur l’essentiel
Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.
Foire aux questions
Qu'est-ce que j'obtiens en achetant ce document ?
Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.
Garantie de remboursement : comment ça marche ?
Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.
Auprès de qui est-ce que j'achète ce résumé ?
Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur aline1. Stuvia facilite les paiements au vendeur.
Est-ce que j'aurai un abonnement?
Non, vous n'achetez ce résumé que pour €5,99. Vous n'êtes lié à rien après votre achat.