Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Summary Research Methods in Accounting TEW

Note
-
Vendu
-
Pages
23
Publié le
01-01-2026
Écrit en
2022/2023

Summary of the course Research Methods in Accounting, by Sophie Maussen.











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
1 janvier 2026
Nombre de pages
23
Écrit en
2022/2023
Type
Resume

Sujets

Aperçu du contenu

Research methods in
accounting
Introduction
Kinney paragraphs
What are you trying to find out, conceptually? (observed in practice)

 What concepts or theories underlie your idea?

Why is an answer important and to whom?

 Who will care about your answer and why should they care?

How will you find the answer, operationally? (how to measure?)

 What research method and data will you use to find the answer?

Libby boxes
Libby boxes = predictive validity framework

 Very useful for archival, survey and experimental research
 Includes 5 links which determine a study’s internal and external validity

Internal validity = do we measure what we want to measure? Does the conceptual level matches the
operational level?

External validity = does it makes sense in the real world? Is it relevant?

LINKS:

1. Start from a good and relevant research question (rely on theory to build hypotheses)
2. Operationalization of independent variable (measurement is important)
3. Operationalization of dependent variable (measurement is important)
4. Statistical test of causation (in a lab or field experiment)/association (in survey or archival studies)
5. Includes relevant control variables




1

,Structure of a research paper
Structure:

1. Introduction
2. Literature review and hypotheses development
3. Methodology
4. Results
5. Discussion and conclusion

Research methods
Methods:

1. Archival studies
2. Field studies
3. Field experiments
4. Surveys
5. Laboratory studies
6. Laboratory experiments

Archival studies
Large datasets => powerful tests of association

BUT no causality + hard to devise measures that precisely capture the constructs specified in the theory
they seek to test

Field studies
Rich contextual insights

BUT small samples so no generalizability + attribution

Field experiments
TEST CAUSALITY through manipulation! + rich contextual insights

BUT small samples so small power and what about generalizability?



2

, Surveys
Measurement of specific constructs => generalizability

BUT no causality + self-reported measures (inaccurate or dishonest responses)

Laboratory studies
Controlled setting + do not intervene

BUT no causality + limits contextualization

Laboratory experiments
TEST CAUSALITY through manipulation + controlled setting

BUT no generalizability + contextualization




Archival accounting research
Single-equation regression model = the dependent variable is expressed as a linear function of 1 or more
explanatory variables

 If there are causal relationships in such a model, the dependent and explanatory variables flow in
1 direction only!! (from explanatory variables to the dependent variable; x  y)

Simple/two-variable regression analysis= study the dependence of 1 variable on 1 explanatory variable

Multiple regression analysis = study the dependence of 1 variable on multiple explanatory variables

Chapter 1: The nature of regression analysis
The modern interpretation of regression
Regression analysis = the study of the dependence of 1 variable (dependent variable) on 1 or more other
variables (explanatory/independent variables)

 Goal: to estimate or predict the (population) mean or average value of the dependent variable in terms
of the known or fixed values of the independent variable

Statistical vs. Deterministic relationships
Stochastic/random variables = variables with probability distributions (Ci = C0 + C1 *Xi + ui)

Deterministic/functional variables = variables with no error term (Ci = C0 + C1 *Xi)

Regression vs. Causation
We test ASSOCIATION!!

Regression does NOT necessarily imply causation!

 We need theory to draw causal conclusions (a statistical relationship in itself cannot logically
imply causation)

How can we draw causal conclusions based on archival data?

1. Identify a quasi-experimental setting (compare before and after) to assume randomization

3
€5,56
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
hannedewint
3,0
(1)

Faites connaissance avec le vendeur

Seller avatar
hannedewint Universiteit Gent
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
2
Membre depuis
8 mois
Nombre de followers
0
Documents
10
Dernière vente
7 mois de cela

3,0

1 revues

5
0
4
0
3
1
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions