100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

WGU D501 – Machine Learning DevOps | Objective Assessment | OA | Questions and Answers | 2026 Update | 100% Correct.

Puntuación
-
Vendido
-
Páginas
38
Grado
A+
Subido en
24-12-2025
Escrito en
2025/2026

WGU D501 – Machine Learning DevOps | Objective Assessment | OA | Questions and Answers | 2026 Update | 100% Correct.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
24 de diciembre de 2025
Número de páginas
38
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

WGU D501 – Machine Learning DevOps | Objective Assessment | OA |
Questions and Answers | 2026 Update | 100% Correct.

Complete Study Guide with Questions & Answers
(Aligned to Western Governors University OA + performance expectations)




DOMAIN 1: ML DevOps Fundamentals
Q1. What is ML DevOps (MLOps)?

Answer:
MLOps is a set of practices that combines machine learning, DevOps, and data engineering to
automate, deploy, monitor, and maintain ML models in production.



Q2. How is MLOps different from traditional DevOps?

Answer:
Traditional DevOps manages code, while MLOps manages code + data + models, including
retraining and model drift.



Q3. Why is MLOps necessary for machine learning systems?

Answer:
Because ML models degrade over time due to data drift, require retraining, and depend on
data pipelines, not just application code.



Q4. What are the core components of MLOps?

Answer:

 Data pipelines
 Model training
 Model versioning
 Deployment
 Monitoring

,  Retraining




DOMAIN 2: Data Management & Pipelines
Q5. What is a data pipeline?

Answer:
An automated process that ingests, validates, transforms, and stores data for ML training or
inference.



Q6. Why is data validation critical in MLOps?

Answer:
Because poor or unexpected data leads to incorrect predictions and model failure.



Q7. What is feature engineering?

Answer:
The process of transforming raw data into meaningful inputs (features) for ML models.



Q8. What is feature store and why is it used?

Answer:
A centralized repository that stores and serves consistent features for both training and
inference.



Q9. What is data drift?

Answer:
When the statistical properties of incoming data change over time compared to training data.



Q10. What is concept drift?

,Answer:
When the relationship between input data and target output changes over time.




DOMAIN 3: Model Training & Versioning
Q11. What is model versioning?

Answer:
Tracking different versions of trained models so they can be compared, rolled back, or
redeployed.



Q12. Why is model reproducibility important?

Answer:
To ensure results can be recreated using the same code, data, and parameters.



Q13. What is an experiment in MLOps?

Answer:
A controlled training run with specific data, parameters, and metrics.



Q14. What is hyperparameter tuning?

Answer:
The process of optimizing model parameters that are not learned during training.



Q15. What is a training pipeline?

Answer:
An automated workflow that handles data ingestion, training, evaluation, and model storage.




DOMAIN 4: Model Evaluation & Validation

, Q16. Why is model evaluation required before deployment?

Answer:
To ensure the model meets accuracy, fairness, and performance requirements.



Q17. What is overfitting?

Answer:
When a model performs well on training data but poorly on unseen data.



Q18. What is underfitting?

Answer:
When a model is too simple and fails to capture patterns in the data.



Q19. What is cross-validation?

Answer:
A technique that splits data into multiple training and validation sets to improve reliability.



Q20. Why are baseline models important?

Answer:
They provide a minimum performance benchmark to justify more complex models.




DOMAIN 5: Model Deployment
Q21. What does it mean to deploy a model?

Answer:
Making a trained model available for real-time or batch predictions.



Q22. What is batch inference?
$18.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Wiseman NURSING
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
6699
Miembro desde
4 año
Número de seguidores
3840
Documentos
26028
Última venta
8 horas hace
Testsprint

Updated exams .Actual tests 100% verified.ATI,NURSING,PMHNP,TNCC,USMLE,ACLS,WGU AND ALL EXAMS guaranteed success.Here, you will find everything you need in NURSING EXAMS AND TESTBANKS.Contact us, to fetch it for you in minutes if we do not have it in this shop.BUY WITHOUT DOUBT!!!!Always leave a review after purchasing any document so as to make sure our customers are 100% satisfied. **Ace Your Exams with Confidence!**

3.9

1373 reseñas

5
676
4
248
3
210
2
76
1
163

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes