100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

QMB3302 Final assist Questions and Answers

Puntuación
-
Vendido
-
Páginas
5
Grado
A+
Subido en
24-12-2025
Escrito en
2025/2026

QMB3302 Final assist

Institución
QMB3302
Grado
QMB3302









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
QMB3302
Grado
QMB3302

Información del documento

Subido en
24 de diciembre de 2025
Número de páginas
5
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

QMB3302 Final assist

ENSEMBLE- Which of the following statements best describes an ensemble method in
machine learning? - answer A technique that combines the results of multiple models to
improve overall predictive accuracy (There are various ensemble methods, but the two
main types are:
Bagging (Bootstrap Aggregating): In bagging, multiple instances of the same learning
algorithm are trained on different subsets of the training data. Each model in the
ensemble is trained independently, and the final prediction is often made by averaging
or taking a vote among the predictions of individual models. Random Forest is a popular
example of a bagging ensemble method.
Boosting: In boosting, models are trained sequentially, with each new model focusing
on the mistakes made by the previous ones. The predictions of individual models are
weighted and combined to form the final prediction. Examples of boosting algorithms
include AdaBoost, Gradient Boosting, and XGBoost.
Ensemble methods are effective because they can reduce overfitting, improve
generalization, and handle different aspects of the data that may be challenging for a
single model to capture.)

KMEANS AlGORITHM- - answerIn kmeans- the algorithm has multiple iterations. If we
have a simple 2d problem, and a k =2. After the initial centroid, measuring the distance
of each point or record to it after

(Initialization:
Randomly choose K initial cluster centroids.
Assignment (Expectation) Step:
Assign each data point to the nearest centroid.
Update (Maximization) Step:
Recalculate centroids based on the mean of points in each cluster.
Convergence:
Repeat steps 2 and 3 until centroids stabilize (convergence).
Result:
Obtain K clusters with data points assigned to each.
Considerations:
Sensitive to initial centroids.
Assumes spherical clusters.
Requires pre-specification of K.
Not robust to outliers.
Remember, it's crucial to run K-means multiple times with different initializations and
choose the solution with the lowest sum of squared distances for better results.)

, RANDOM FOREST ALGORITHM- - answerThe random forest algorithm prevents, or at
least avoids to some extent, the problems with overfitting found in decision trees.
(TRUE)

(Bootstrap Sampling:
Create multiple random subsets (bootstrapped samples) from the original dataset.
Decision Tree Construction:
Build a decision tree for each subset with random feature selection at each split.
Voting (Classification) or Averaging (Regression):
Aggregate predictions from all trees by majority vote (classification) or averaging
(regression).
Ensemble Result:
Obtain a robust and accurate prediction by combining individual tree predictions.
Key Features:
Reduces overfitting by combining diverse trees.
Handles missing values and maintains accuracy on complex datasets.
Provides feature importance information.
Considerations:
May be computationally intensive due to multiple trees.
Tends to be less interpretable compared to individual decision trees.
Random Forest is a powerful ensemble learning method that excels in various tasks,
including classification and regression, and is known for its robustness and ability to
handle complex datasets.)

COMMON CASE FOR RANDOM FOREST ALGORITHM - answerClassifying data into
categories based on input features

SUPERVISED LEARNING- - answerA machine learning approach where the algorithm
receives labeled data and learns to map inputs to outputs based on those labels

CLUSTERING ALGORITHM- - answerSituation of use: You have a dataset containing
customer data for Cheesecake Factory and you want to look at customer spending at
the restaurant in order to find patterns among customers who share similar
characteristics

(K-means clustering is an unsupervised machine learning algorithm designed to
partition a dataset into K distinct, non-overlapping subsets (clusters). The algorithm
aims to minimize the variance or sum of squared distances between data points and
their assigned cluster centroids.)

(Initialization:
Randomly select K initial cluster centroids.
Assignment (Expectation) Step:
Assign each data point to the nearest centroid.
Update (Maximization) Step:
Recalculate centroids based on the mean of points in each cluster.
$16.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
julianah420 Phoenix University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
664
Miembro desde
3 año
Número de seguidores
324
Documentos
34261
Última venta
7 horas hace
NURSING,TESTBANKS,ASSIGNMENT,AQA AND ALL REVISION MATERIALS

On this page, you find all documents, package deals, and flashcards offered by seller julianah420

4.3

151 reseñas

5
102
4
20
3
9
2
5
1
15

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes