100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Solutions Manual for How to Read and do Proofs An Introduction to Mathematical Thought Processes, 6e Daniel Solow (All Chapters)

Puntuación
-
Vendido
-
Páginas
228
Grado
A+
Subido en
23-12-2025
Escrito en
2025/2026

Solutions Manual for How to Read and do Proofs An Introduction to Mathematical Thought Processes, 6e Daniel Solow (All Chapters)

Institución
How To Read And Do Proofs
Grado
How to Read and Do Proofs











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
How to Read and Do Proofs
Grado
How to Read and Do Proofs

Información del documento

Subido en
23 de diciembre de 2025
Número de páginas
228
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

MEDSTUDY.COM




Solutions Manual for
How to Read and do
Proofs An
Introduction to
M

Mathematical Thought
ED

Processes, 6e Daniel
ST

Solow (All Chapters)
U
D
Y

, 1
M

Solutions to Exercises
ED

1.1 (a), (c), and (e) are statements.
ST

1.2 (a), (c), and (d) are statements.

1.3 a. Hypothesis: The right triangle XYZ with sides of lengths
x and y and hypotenuse of length z has an
area of z2/4.
U
Conclusion: The triangle XYZ is isosceles.
b. Hypothesis: n is an even integer.
Conclusion: n2 is an even integer.
c. Hypothesis: a, b, c, d, e, and ƒ are real numbers for which
D
ad — bc /= 0.
Conclusion: The two linear equations ax + by = e and
cx + dy = ƒ can be solved for x and y.
Y
1.4 a. Hypothesis: r is a real number that satisfies r2 = 2.
Conclusion: r is irrational.
b. Hypothesis: p and q are positive real numbers such that

pq/= (p + q) /2.
Conclusion: p /= q.
c. Hypothesis: ƒ(x) = 2—x for all real numbers x.
Conclusion: There exists a real number x such that
0 ≤ x ≤ 1 and ƒ(x) = x.



1

,MEDSTUDY.COM




2 SOLUTIONS TO EXERCISES IN CHAPTER 1


1.5 a. Hypothesis: A, B and C are sets of real numbers with A⊆ B.
Conclusion: A ∩ C ⊆ B ∩ C.
b. Hypothesis: For a positive integer n, the function ƒ defined by:

n/2, if n is even
ƒ(n) =
3n + 1, if n is odd

For an integer k ≥ 1, ƒk(n) = ƒk—1(ƒ(n)), and ƒ1(n) = ƒ(n).
Conclusion: For any positive integer n, there is an integer k > 0 such that
ƒk (n) = 1.
M
c. Hypothesis: x is a real number.
Conclusion: The minimum value of x(x — 1) ≥ —1/4.
ED
1.6 Jack’s statement is true. This is because the hypothesis that Jack did
not get his car fixed is false. Therefore, according to rows 3 and 4 of Table
1.1, the if/then statement is true, regardless of the truth of the conclusion.

1.7 Jack’s statement is false. This is because the hypothesis, getting his
car fixed, is true while the conclusion, not missing the interview, is false.
Therefore, according to row 2 of the Table 1.1, the if/then statement is false.
ST
1.8 Jack won the contest. This is because the hypothesis that Jack is younger
than his father is true, and, because the if/then statement is true, row 1 of
Table 1.1 is applicable. Therefore, the conclusion that Jack will not lose the
contest is also true.

1.9 a. True because A : 2 > 7 is false (see rows 3 and 4 of Table 1.1).
U
b. True because B : 1 < 2 is true (see rows 1 and 3 of Table 1.1).

1.10 a. True because 1 < 3 is true (see rows 1 and 3 of Table 1.1).
D
b. True if x =/3 (see rows 3 and 4 of Table 1.1).
False when x = 3 because then the hypothesis is true and the conclu-
sion 1 > 2 is false (see row 2 of Table 1.1).
Y
1.11 If you want to prove that “A implies B” is true and you know that B
is false, then A should also be false. The reason is that, if A is false, then
it does not matter whether B is true or false because Table 1.1 ensures that
“A implies B” is true. On the other hand, if A is true and B is false, then
“A implies B” would be false.

1.12 When B is true, rows 1 and 3 of Table 1.1 indicate that the statement
“A implies B” is true. You therefore need only consider the case when B is
false. In this case, for “A implies B” to be true, it had better be that A is
false so that row 4 of Table 1.1 is applicable. In other words, you can assume
B is false; your job is to show that A is false.

, SOLUTIONS TO EXERCISES IN CHAPTER 1 3


1.13 (T = true, F = false)
A B C B⇒C A ⇒ (B ⇒ C)
T T T T T
T T F F F
T F T T T
T F F T T
F T T T T
F T F F T
F F T T T
M
F F F T T

1.14 (T = true, F = false)
ED
A B C A⇒B (A ⇒ B) ⇒ C
T T T T T
T T F T F
T F T F T
T F F F T
F T T T T
ST
F T F T F
F F T T T
F F F T F

1.15 (T = true, F = false)
B⇒A A⇒B
U
A B
T T T T
T F T F
D
F T F T
F F T T
From this table, B ⇒ A is not always true at the same time A ⇒ B is true.
Y
1.16 From row 2 of Table 1.1, you must show that A is true and B is false.

1.17 a. For A to be true and B to be false, it is necessary to find a real
number x > 0 such that log10(x) ≤ 0. For example, x = 0.1 > 0, while
log10(0.1) = — ≤ Thus, x = 0.1 is a desired counterexample. (Any
1 0.
value of x such that 0 < x ≤1 would provide a counterexample.)
b. For A to be true and B to be false, it is necessary to find an integer
n > 0 such that n3 < n!. For example, n = 6 > 0, while 63 = 216 <
720 = 6!. Thus, n = 6 is a desired counterexample. (Any integer
n ≥ 6 would provide a counterexample.)
$21.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
MedStudy Chamberlain College Of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
25
Miembro desde
6 meses
Número de seguidores
0
Documentos
1100
Última venta
20 horas hace
Welcome to MedStudy on Stuvia!

Unlock academic success with high-quality, student-approved study materials. My shop offers well-structured, easy-to-understand notes, summaries, exam guides, and assignments tailored to help you ace your courses with confidence. Whether you\\\'re preparing for finals or just need a quick refresher, you\\\'ll find reliable, up-to-date resources here—created with clarity, accuracy, and real student needs in mind. Subjects covered: [Nursing, Business, Accounting, Mathematics, Biology, etc...] .Verified content .Clear explanations &amp; key exam tips . Instant digital download Start learning smarter—browse my notes today!

Lee mas Leer menos
4.3

4 reseñas

5
3
4
0
3
0
2
1
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes