100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solutions Manual for Interplanetary Astrodynamics, 1st Edition by David Spencer, Davide Conte Chapters, 2-6

Puntuación
-
Vendido
-
Páginas
147
Grado
A+
Subido en
18-12-2025
Escrito en
2025/2026

Solutions Manual for Interplanetary Astrodynamics, 1e by David Spencer, Davide Conte (Selective Chapters, 2-6) 1. Introduction. 2. Kinematics, Dynamics, and Astrodynamics. 3. N-Body Problem. 4. Coordinate Frames, Time, and Planetary Ephemerides. 5. Trajectory Design. 6. Navigation and Targeting.

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Grado

Información del documento

Subido en
18 de diciembre de 2025
Número de páginas
147
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Solutions Manual for Interplanetary Astrodynamics, 1e by David
Spencer, Davide Conte (Selective Chapters, 2-6)


Interplanetary Astrodynamics

Chapter 2 Problem Solutions

For all numerical problems, use 𝜇 = 398, 600 km3 /s2 as the gravitational parameter of the Earth.


Problem 1
Starting with the unperturbed two-body equations of motion, Equation (2.9), derive its state space
form in spherical coordinates.
Solution
Consider the Cartesian (𝑥, 𝑦, and 𝑧) formulation of the equations of motion for the two-body
problem:
𝜇𝑥
𝑥̈ = −
𝑟3
𝜇𝑦
𝑦̈ = − 3
𝑟
𝜇𝑧
𝑧̈ = − 3
𝑟

In order to convert between Cartesian and spherical coordinates, we use the following relationships

𝑥 = 𝜌 sin 𝜙 cos 𝜃
𝑦 = 𝜌 sin 𝜙 sin 𝜃
𝑧 = 𝜌 cos 𝜙

where 𝜌, 𝜙, and 𝜃 are the spherical coordinates.
Taking one time-derivative of the above equations for the 𝑥, 𝑦, and 𝑧 coordinates expressed in
terms of 𝜌, 𝜙, and 𝜃 gives

𝑥̇ = 𝜌̇ cos 𝜃 sin 𝜙 + 𝜌𝜙̇ cos 𝜙 cos 𝜃 − 𝜌𝜃̇ sin 𝜙 sin 𝜃
𝑦̇ = 𝜌̇ sin 𝜙 sin 𝜃 + 𝜌𝜙̇ cos 𝜙 sin 𝜃 + 𝜌𝜃̇ cos 𝜃 sin 𝜃
𝑧̇ = 𝜌̇ cos 𝜙 − 𝜌𝜙̇ sin 𝜙




1




Downloaded by: tutorsection | Want to earn $1.236
Distribution of this document is illegal extra per year?

,Taking another time-derivative:

𝑥̈ = 𝜌̈ cos 𝜃 sin 𝜙 − 𝜌𝜙̇ 2 cos 𝜃 sin 𝜙 − 𝜃̇ 2 cos 𝜃 sin 𝜙 + 𝜌𝜙̈ cos 𝜙 cos 𝜃+
̈ sin 𝜙 sin 𝜃 + 2𝜌̇ 𝜙̇ cos 𝜙 cos 𝜃 − 2𝜌̇ 𝜃̇ sin 𝜙 sin 𝜃 − 2𝜌𝜙̇ 𝜃̇ cos 𝜙 sin 𝜃
− 𝜃𝜌
𝑦̈ = 𝜌̈ sin 𝜙 sin 𝜃 − 𝜌𝜙̇ 2 sin 𝜙 sin 𝜃 − 𝜌𝜃̇ 2 sin 𝜙 sin 𝜃 + 𝜌𝜙̈ cos 𝜙 sin 𝜃+
+ 𝜌𝜃̈ cos 𝜃 sin 𝜙 + 2𝜌̇ 𝜙̇ cos 𝜙 sin 𝜃 + 2𝜌̇ 𝜃̇ cos 𝜃 sin 𝜙 + 2𝜌𝜃̇ 𝜙̇ cos 𝜙 cos 𝜃
𝑧̈ = 𝜌̈ cos 𝜙 − 2𝜌̇ 𝜙̇ sin 𝜙 − 𝜌𝜙̈ sin 𝜙 − 𝜌𝜙̇ 2 cos 𝜙

Equating each 𝑥, 𝑦, and 𝑧 acceleration expressed in spherical coordinates with its respective
acceleration terms gives us the equations of motion for the two-body problem in terms of spherical
coordinates 𝜌, 𝜙, and 𝜃

𝜌̈ cos 𝜃 sin 𝜙 − 𝜌𝜙̇ 2 cos 𝜃 sin 𝜙 − 𝜃̇ 2 cos 𝜃 sin 𝜙 + 𝜌𝜙̈ cos 𝜙 cos 𝜃+
̈ sin 𝜙 sin 𝜃 + 2𝜌̇ 𝜙̇ cos 𝜙 cos 𝜃 − 2𝜌̇ 𝜃̇ sin 𝜙 sin 𝜃 − 2𝜌𝜙̇ 𝜃̇ cos 𝜙 sin 𝜃+
− 𝜃𝜌
𝜇 sin 𝜙 cos 𝜃
+ =0
𝜌2
𝜌̈ sin 𝜙 sin 𝜃 − 𝜌𝜙̇ 2 sin 𝜙 sin 𝜃 − 𝜌𝜃̇ 2 sin 𝜙 sin 𝜃 + 𝜌𝜙̈ cos 𝜙 sin 𝜃+
+ 𝜌𝜃̈ cos 𝜃 sin 𝜙 + 2𝜌̇ 𝜙̇ cos 𝜙 sin 𝜃 + 2𝜌̇ 𝜃̇ cos 𝜃 sin 𝜙 + 2𝜌𝜃̇ 𝜙̇ cos 𝜙 cos 𝜃
𝜇 sin 𝜙 sin 𝜃
+ =0
𝜌2
𝜇 cos 𝜙
𝜌̈ cos 𝜙 − 2𝜌̇ 𝜙̇ sin 𝜙 − 𝜌𝜙̈ sin 𝜙 − 𝜌𝜙̇ 2 cos 𝜙 + =0
𝜌2

where we used the fact that 𝜌 = 𝑟 = 𝑥 2 + 𝑦 2 + 𝑧 2 .




2




Downloaded by: tutorsection | Want to earn $1.236
Distribution of this document is illegal extra per year?

,Problem 2
Prove that for the unperturbed two-body problem, orbital energy is constant.
Solution
𝑣2
Start with the vis-viva equation, Equation (2.50): 𝐸 = 2
− 𝜇
𝑟

To prove that energy is constant, we need to take its time derivative and show that it is equal to
zero:

𝑑𝐸 𝑑 𝐯⋅𝐯 𝑑 𝜇
= ( ) −
𝑑𝑡 𝑑𝑡 2 𝑑𝑡 (𝐫 ⋅ 𝐫)1/2 ]
[

𝐯̇ ⋅ 𝐯 + 𝐯 ⋅ 𝐯̇ 1
= − 𝜇 − 𝐫−3 (2𝐫 ⋅ 𝐫)
̇
( 2 ) [ 2 )

Recall that 𝐯̇ = 𝐫̈ = −𝜇𝐫
𝑟3
and 𝐫̇ = 𝐯, so

𝑑𝐸 −𝜇𝐫 𝜇𝐫
=𝐯⋅( 3 )+ 3 ⋅𝐯
𝑑𝑡 𝑟 𝑟

𝜇𝐫 𝜇𝐫
= −𝐯 ⋅ ( + 𝐯 ⋅ =0
𝑟3 ) 𝑟3

Thus, 𝑑𝐸
𝑑𝑡
= 0 which means that orbital energy is constant.




3




Downloaded by: tutorsection | Want to earn $1.236
Distribution of this document is illegal extra per year?

, Problem 3
Prove that the angular momentum vector and eccentricity vector are orthogonal to each other.
Solution
In order to prove that two vectors are orthogonal, or perpendicular, to each other, one must show
that their dot product is zero.
Starting with the definitions of eccentricity, Equation (2.27),
𝐯×𝐡 𝐫
𝐞= −
𝜇 𝑟

and angular momentum, Equation (2.41),

𝐡=𝐫×𝐯

we take the dot product between angular momentum and eccentricity,

𝐯×𝐡 𝐫
𝐡⋅𝐞=𝐡⋅ −
( 𝜇 𝑟)
1 1
= 𝐡 ⋅ (𝐯 × 𝐡) − (𝐫 × 𝐯) ⋅ 𝐫
𝜇 𝑟
where we used the definition of angular momentum for the second term. We then use the scalar
triple product on the above equation, which, for three generic vectors 𝐀, 𝐁, and 𝐂 is

𝐀 ⋅ (𝐁 × 𝐂) = 𝐁 ⋅ (𝐂 × 𝐀) = 𝐂 ⋅ (𝐀 × 𝐁)

This helps us simplify the first term as
1 1 1
𝐡 ⋅ (𝐯 × 𝐡) = 𝐯 ⋅ (𝐡 × 𝐡) = 𝐯 ⋅ 𝟎 = 0
𝜇 𝜇 𝜇

and the second term as
1 1 1
− 𝐫 ⋅ (𝐯 × 𝐫) = − 𝐯 ⋅ (𝐫 × 𝐫) = − 𝐯 ⋅ 𝟎 = 0
𝑟 𝑟 𝑟
which proves that 𝐡 ⋅ 𝐞 = 0 and thus 𝐡 ⟂ 𝐞 = 0.




4




Downloaded by: tutorsection | Want to earn $1.236
Distribution of this document is illegal extra per year?
$13.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
TestsBanks University of Greenwich (London)
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
868
Miembro desde
4 año
Número de seguidores
180
Documentos
2327
Última venta
2 días hace
Accounting, Finance, Statistics, Computer Science, Nursing, Chemistry, Biology & More — A+ Test Banks, Study Guides & Solutions

Welcome to TestsBanks! Best Educational Resources for Student I offer test banks, study guides, and solution manuals for all subjects — including specialized test banks and solution manuals for business books. My materials have already supported countless students in achieving higher grades, and I want them to be the guide that makes your academic journey easier too. I’m passionate, approachable, and always focused on quality — because I believe every student deserves the chance to excel. THANKS ALOT!!

Lee mas Leer menos
4.1

132 reseñas

5
79
4
19
3
13
2
6
1
15

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes