100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Instructor’s Solutions Manual – Introduction to the Theory of Computation (Third Edition) – Complete Problem Solutions

Puntuación
-
Vendido
-
Páginas
86
Grado
A+
Subido en
09-12-2025
Escrito en
2025/2026

This document provides detailed, instructor-level solutions for all exercises found in the Third Edition of Introduction to the Theory of Computation. It includes step-by-step explanations for topics such as automata theory, formal languages, Turing machines, computational complexity, and decidability. The manual follows the structure of the textbook and is designed to support teaching, exam preparation, and deeper understanding of theoretical computer science concepts.

Mostrar más Leer menos
Institución
Solution Manual
Grado
Solution Manual











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Solution Manual
Grado
Solution Manual

Información del documento

Subido en
9 de diciembre de 2025
Número de páginas
86
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Instructor’s Solutions Manual for Introduction to the Theory
of Computation third edition

Michael Sipser Mathematics Department MIT




Preface

This Instructor’s Manual is designed to accompany the textbook, Introduction to the Theory
of Computation, third edition, by Michael Sipser, published by Cengage, 2013. It contains
solutions to almost all of the exercises and problems in Chapters 0–9. Most of the omitted
solutions in the early chapters require figures, and producing these required more work that
we were able to put into this manual at this point. A few problems were omitted in the later
chapters without any good excuse.
Some of these solutions were based on solutions written by my teaching assistants and
by the authors of the Instructor’s Manual for the first edition.
This manual is available only to instructors.




Chapter 0

0.1 a. The odd positive integers.
b. The even integers.
c. The even positive integers.
d. The positive integers which are a multiple of 6.
e. The palindromes over 0,1 .
f. The empty set.

0.2 a. {1, 10, 100}.
b. {n| n > 5}.
c. {1, 2, 3, 4}.
d. {aba}.
e. {ε}.
f. ∅.

0.3 a. No.
b. Yes.
c. A.
d. B.
e. {(x, x), (x, y), (y, x), (y, y), (z, x), (z, y)}.
f. {∅, {x}, {y}, {x, y}}.

0.4 A × B has ab elements, because each element of A is paired with each element of B, so
A × B contains b elements for each of the a elements of A.

0.5 (C) contains 2c elements because each element of C may either be in (C) or not in

, (C), and so each element of C doubles the number of subsets of C. Alternatively, we
can view each subset S of C as corresponding to a binary string b of length c, where S
contains the ith element of C iff the ith place of b is 1. There are 2c strings of length c
and hence that many subsets of C.

0.6 a. f (2) = 7.
b. The range = 6, 7 and the domain = 1, 2, 3, 4, 5 .
c. g(2, 10) = 6.
d. The range = 1, 2, 3, 4, 5 6, 7, 8, 9, 10 and the domain = 6, 7, 8, 9, 10 .
e. f (4) = 7 so g(4,f (4)) = g(4, 7) = 8.




0.7 The underlying set is U in these examples.
a. Let R be the ―within 1‖ relation, that is, R = {(a, b)| |a − b| ≤ 1}.
b. Let R be the ―less than or equal to‖ relation, that is, R = {(a, b)| a ≤ b}.
c. Finding a R that is symmetric and transitive but not reflexive is
tricky because of the following ―near proof‖ that R cannot exist! Assume
that R is symmetric and transitive and chose any member x in the
∈ set. Pick any other
underlying ∈ member y in the underlying set for which ∈
(x, y) R. Then (y, x) R because R is symmetric and so (x, x) R
because R is transitive, hence R is reflexive. This argument fails to be an
actual proof because y may fail to exist for x.
Let R be the ―neither side is 1‖ relation, R = {(a, b)| a /= 1 and b /= 1}.

0.10 Let G be any graph with n nodes where n 2. The
degree of every node in G is one of the n possible values from 0 to n
1. We would like to use the pigeon hole principle to show that two of
these values must be the same, but number of possible values is too
great. However, not all of the values can occur in the same graph
because a node of degree 0 cannot coexist with a node of degree n 1.
Hence G can exhibit at most n 1 degree values among its n nodes, so
two of the values must be the same.

0.11 The error occurs in the last sentence. If H contains at
least 3 horses, H1 and H2 contain a horse in common, so the argument
works properly. But, if H contains exactly 2 horses, then H1 and H2
each have exactly 1 horse, but do not have a horse in common.
Hence we cannot conclude that the horse in H1 has the same color as
the horse in H2. So the 2 horses in H may not be colored the same.
1
0.12 a. Basis: Let n = 0. Then, S(n) = 0 by definition. Furthermore, n(n + 1) = 0. So
2
1
S(n) = n(n + 1) when n = 0.
Induction: Assume true for n = k where k 0 and prove true for n = k + 1. We
can use this series of equalities:

S(k + 1) = 1 + 2 + · · · + k + (k + 1) by definition
= S(k) + (k + 1) because S(k) = 1 + 2 + · · · + k
1
= k(k + 1) + (k + 1) by the induction hypothesis
1
= (k + 1)(k + 2) by algebra
1 4 3 2
b. Basis: Let n = 0. Then, C(n) = 0 by definition, and (n + 2n + n ) = 0. So
4

, 1 4 3 2
C(n) = (n + 2n + n ) when n = 0.
Induction: Assume true for n = k where k 0 and prove true for n = k + 1. We
can use this series of equalities:

C(k + 1) = 1 + 2 + · · · + k + (k + 1)
3 3 3 3
by definition
C(k) = 1 + · · · + k
3 3 3
= C(k) + (k + 1)
1 4 3 2 3
= (n + 2n + n ) + (k + 1) induction hypothesis
1 4 3 2
= ((n + 1) + 2(n + 1) + (n + 1) ) by algebra

0.13 Dividing by (a b) is illegal, because a = b hence a b = 0 and division by 0 is
undefin



Chapter 1
1.12 Observe that D b⊆∗a∗ because D doesn’t contain strings that have ab as a substring.
Hence D is generated by the regular expression (aa)∗b(bb)∗. From this description,
finding the DFA for D is more easily done.

1.14 a. Let M ′ be the DFA M with the accept and non-accept states swapped. We show that M ′
recognizes the complement of B, where B is the language recognized by M . Suppose
M ′ accepts x. If we run M ′ on x we end in an accept state of M ′. Because M and M ′
have swapped accept/non-accept states, if we run M on x, we would end in a non-accept
state. Therefore, x B. Similarly, if x is not accepted by M ′, then it would be accepted
by M . So M ′ accepts exactly those strings not accepted by M . Therefore, M ′ recognizes
the complement of B.
Since B could be any arbitrary regular language and our construction shows how to
build an automaton to recognize its complement, it follows that the complement of any
regular language is also regular. Therefore, the class of regular languages is closed under
complement.
b. Consider the NFA in Exercise 1.16(a). The string a is accepted by this automaton. If we
swap the accept and reject states, the string a is still accepted. This shows that swapping
the accept and non-accept states of an NFA doesn’t necessarily yield a new NFA rec-
ognizing the complementary language. The class of languages recognized by NFAs is,
however, closed under complement. This follows from the fact that the class of languages
recognized by NFAs is precisely the class of languages recognized by DFAs which we
know is closed under complement from part (a).

1.18 Let Σ = {0, 1}.
a. 1Σ∗0
b. Σ∗1Σ∗1Σ∗1Σ∗
c. Σ∗0101Σ∗
d. ΣΣ0Σ∗
e. (0 ∪ 1Σ)(ΣΣ)∗
f. (0 ∪ (10)∗)∗1∗
g. (ε ∪ Σ)(ε ∪ Σ)(ε ∪ Σ)(ε ∪ Σ)(ε ∪ Σ)
h. Σ∗0Σ∗ ∪ 1111Σ∗ ∪ 1 ∪ ε
i. (1Σ)∗(1 ∪ ε)
j. 0∗(100 ∪ 010 ∪ 001 ∪ 00)0∗
k. ε∪0
l.
(1∗01∗01∗)∗ ∪ 0∗10∗10


m.

, n. Σ+

1.20 a. ab, ε; ba, aba
b. ab, abab; ε, aabb
c. ε, aa; ab, aabb
d. ε, aaa; aa, b
e. aba, aabbaa; ε, abbb
f. aba, bab; ε, ababab
g. b, ab; ε, bb
h. ba, bba; b, ε
1.21 In both parts we first add a new start state and a new accept state. Several solutions are
possible, depending on the order states are removed.
a. Here we remove state 1 then state 2 and we obtain
a∗b(a ba∗b)∗
b. Here we remove states 1, 2, then 3 and we obtain
o ∪ ((a ∪ b)a∗b((b ∪ a(a ∪ b))a∗b)∗(ε ∪ a))
b. /#(#∗(a ∪ b) ∪ /)∗# /
+
1.22

1.24 a. q1, q1, q1, q1; 000.
b. q1, q2, q2, q2; 111.
c. q1, q1, q2, q1, q2; 0101.
d. q1, q3; 1.
e. q1, q3, q2, q3, q2; 1111.
f. q1, q3, q2, q1, q3, q2, q1; 110110.
g. q1; ε.
1.25 A finite state transducer is a 5-tuple (Q, Σ, Γ, δ, q0), where
i) Q is a finite set called the states,
ii) Σ is a finite set called the alphabet,
iii) Γ is a finite set called the output alphabet,
iv) δ : Q Σ Q Γ is the transition function,
v) q0 Q is the start state.
Let M = (Q, Σ, Γ, δ, q0) be a finite state transducer, w = w1w2 wn be a string
over Σ, and v = v1v2 vn be a string over the Γ. Then M outputs v if a sequence of
states r0, r 1 , ... , rn exists in Q with the following two conditions:
i) r0 = qo
ii) δ(ri, wi+1) = (ri+1, vi+1) for i = 0, . . . , n − 1.

1.26 a. T1 = (Q, Σ, Γ, δ, q1), where
i) Q = {q1, q2},
ii) Σ = {0, 1, 2},
iii) Γ = {0, 1},
iv) δ is described as

q1 (q1,0) (q1,0) (q2,1)
q2 (q1,0) (q2,1) (q2,1)
v) q1 is the start state.




b. T2 = (Q, Σ, Γ, δ, q1), where
i) Q = {q1, q2, q3},
$17.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Solutions The Australian
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
31
Miembro desde
2 año
Número de seguidores
11
Documentos
729
Última venta
3 semanas hace
ExamPro Solutions

Welcome to ExamPro Solutions! Your trusted source for accurate, updated, and verified study guides, test banks, solution manuals, and solved exams. Our materials are carefully curated to help students understand key concepts, prepare for exams with confidence, and achieve top grades.

5.0

4 reseñas

5
4
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes