100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Solutions Manual for Introduction to Analysis, An (Classic Version) 4th Edition by Wade, 2018

Puntuación
-
Vendido
-
Páginas
248
Grado
A+
Subido en
09-12-2025
Escrito en
2025/2026

Solutions Manual for Introduction to Analysis, An (Classic Version) 4th Edition by Wade, 2018 Solutions Manual for Introduction to Analysis, An (Classic Version) 4th Edition by Wade, 2018

Institución
Introduction To Analysis, An
Grado
Introduction to Analysis, An











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Introduction to Analysis, An
Grado
Introduction to Analysis, An

Información del documento

Subido en
9 de diciembre de 2025
Número de páginas
248
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Covers All 14 Chapters




SOLUTIONS TO EXERCISES

, An Introduction to Analysis

Table of Contents
Chapter 1: The Real Number System

1.2 Ordered field axioms ........................................................... 1
1.3 The Completeness Axiom… ................................................2
1.4 Mathematical Induction… .................................................... 4
1.5 Inverse Functions and Images… ......................................... 6
1.6 Countable and uncountable sets… .....................................8


Chapter 2: Sequences in R

2.1 Limits of Sequences…....................................................... 10
2.2 Limit Theorems...................................................................11
2.3 Bolzano-Weierstrass Theorem ...........................................13
2.4 Cauchy Sequences… ......................................................... 15
2.5 Limits Supremum and Infimum .......................................... 16

Chapter 3: Functions on R

3.1 Two-Sided Limits… ............................................................ 19
3.2 One-Sided Limits and Limits at Infinity… ............................ 20
3.3 Continuity… ........................................................................ 22
3.4 Uniform Continuity… ..........................................................24

Chapter 4: Differentiability on R

4.1 The Derivative… ................................................................. 27
4.2 Differentiability Theorem… ................................................. 28
4.3 The Mean Value Theorem… .............................................. 30
4.4 Taylor’s Theorem and l’Hôpital’s Rule… ........................... 32
4.5 Inverse Function Theorems ................................................ 34

Chapter 5: Integrability on R

5.1 The Riemann Integral… ...................................................... 37
5.2 Riemann Sums .................................................................... 40
5.3 The Fundamental Theorem of Calculus… ...........................43
5.4 Improper Riemann Integration… ........................................ 46
5.5 Functions of Bounded Variation… ...................................... 49
5.6 Convex Functions… ........................................................... 51




Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.

,Chapter 6: Infinite Series of Real Numbers

6.1 Introduction… .......................................................................53
6.2 Series with Nonnegative Terms… ....................................... 55
6.3 Absolute Convergence…..................................................... 57
6.4 Alternating Series…............................................................. 60
6.5 Estimation of Series… ......................................................... 62
6.6 Additional Tests… ............................................................... 63

Chapter 7: Infinite Series of Functions

7.1 Uniform Convergence of Sequences… ............................... 65
7.2 Uniform Convergence of Series… ....................................... 67
7.3 Power Series… ................................................................... 69
7.4 Analytic Functions… ............................................................72
7.5 Applications…..................................................................... 74

Chapter 8: Euclidean Spaces

8.1 Algebraic Structure… ......................................................... 76
8.2 Planes and Linear Transformations… ................................ 77
8.3 Topology of Rn.......................................................................................................... 79
8.4 Interior, Closure, and Boundary… ...................................... 80

Chapter 9: Convergence in Rn

9.1 Limits of Sequences….........................................................82
9.2 Heine-Borel Theorem .......................................................... 83
9.3 Limits of Functions… ........................................................... 84
9.4 Continuous Functions… ...................................................... 86
9.5 Compact Sets… .................................................................. 87
9.6 Applications…...................................................................... 88

Chapter 10: Metric Spaces

10.1 Introduction… ....................................................................... 90
10.2 Limits of Functions… ............................................................ 91
10.3 Interior, Closure, and Boundary… ........................................ 92
10.4 Compact Sets… ................................................................... 93
10.5 Connected Sets… ................................................................94
10.6 Continuous Functions… ....................................................... 96
10.7 Stone-Weierstrass Theorem................................................. 97




Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.

, Chapter 11: Differentiability on Rn

11.1 Partial Derivatives and Partial Integrals… .............................. 99
11.2 The Definition of Differentiability…..........................................102
11.3 Derivatives, Differentials, and Tangent Planes… ...................104
11.4 The Chain Rule… ................................................................... 107
11.5 The Mean Value Theorem and Taylor’s Formula…................ 108
11.6 The Inverse Function Theorem .............................................. 111
11.7 Optimization… .........................................................................114

Chapter 12: Integration on Rn

12.1 Jordan Regions….................................................................... 117
12.2 Riemann Integration on Jordan Regions….............................. 119
12.3 Iterated Integrals… ...................................................................122
12.4 Change of Variables… ............................................................ 125
12.5 Partitions of Unity…................................................................. 130
12.6 The Gamma Function and Volume .......................................... 131

Chapter 13: Fundamental Theorems of Vector Calculus

13.1 Curves… .................................................................................. 135
13.2 Oriented Curves…....................................................................137
13.3 Surfaces…................................................................................ 140
13.4 Oriented Surfaces… ................................................................. 143
13.5 Theorems of Green and Gauss…............................................. 147
13.6 Stokes’s Theorem .................................................................... 150

Chapter 14: Fourier Series

14.1 Introduction… ........................................................................... 156
14.2 Summability of Fourier Series… ............................................... 157
14.3 Growth of Fourier Coefficients… ............................................. 159
14.4 Convergence of Fourier Series… ............................................ 160
14.5 Uniqueness… ........................................................................... 163




Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.
$17.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
lechaven Chamberlain School Of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
29
Miembro desde
1 año
Número de seguidores
0
Documentos
911
Última venta
1 mes hace
A+ Exam Prep Notes

I offer meticulously crafted study notes and summaries for a range of university subjects, including [Subject 1], [Subject 2], and [Subject 3]. My goal is to simplify complex concepts and provide clear, concise materials that help you achieve your academic goals. All notes are based on [Specific University/Course] curricula and are regularly updated."

4.0

4 reseñas

5
2
4
1
3
0
2
1
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes