100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Data Structures and Algorithm Analysis in C++ (3rd Edition, Mark Allen Weiss) – Complete Solution Manual Overview

Puntuación
-
Vendido
-
Páginas
131
Grado
A+
Subido en
08-12-2025
Escrito en
2025/2026

This document provides a structured overview of the solution manual for Data Structures and Algorithm Analysis in C++ (3rd Edition) by Mark Allen Weiss. It summarizes worked solutions for major topics including algorithm complexity, trees, hashing, priority queues, graphs, and advanced data structures. The material helps students understand implementation details, analyze algorithm efficiency, and prepare for exams or programming assignments.

Mostrar más Leer menos
Institución
Solution Manual
Grado
Solution Manual











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Solution Manual
Grado
Solution Manual

Información del documento

Subido en
8 de diciembre de 2025
Número de páginas
131
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Data Structures and Algorithm Analysis in C++
Solution Manual,3rd Edition (Mark Allen
Weiss) (z-lib.org)


CONTENTS


Preface v

Chapter Introduction 1
1
Chapter Algorithm Analysis 5
2
Chapter Lists, Stacks, and Queues 9
3
Chapter Trees 29
4
Chapter Hashing 41
5
Chapter Priority Queues (Heaps) 45
6
Chapter Sorting 53
7
Chapter The Disjoint Set 59
8
Chapter Graph Algorithms 63
9
Chapter Algorithm Design Techniques 77
10
Chapter Amortized Analysis 87
11
Chapter Advanced Data Structures and 91
12 Implementation

,Perface

cluded in this manual are answers to many of the exercises in the textbook Data
Structures and Algorithm Analysis in C++, third edition, published by Addison-
Wesley. These answers reflect the state of the book in the first printing of the third
edition.
Specifically omitted are general programming questions and any question
whose solution is pointed to by a reference at the end of the chapter. Solutions
vary in degree of completeness; generally, minor details are left to the reader. For
clarity, the few code segments that are present are meant to be pseudo-C++ rather
than completely perfect code.
Errors can be reported to .




Chapter 1


Introduction


1.4 The general way to do this is to write a procedure with heading
void processFile( String fileName );

which opens fileName, does whatever processing is needed, and then closes it. If a line of
the form
#include SomeFile

is detected, then the call
processFile( SomeFile );

is made recursively. Self-referential includes can be detected by keeping a list of
files for which a call to processFile has not yet terminated, and checking this list

, before making a new call to processFile.
1.5 int ones( int n )
{
if( n < 2 )
return n;
return n % 2 + ones( n / 2 );
}

1.7 (a) The proof is by induction. The theorem is clearly true for 0 < X f 1, since it
is true for X = 1, and for X < 1, log X is negative. It is also easy to see that the
theorem holds for 1 < X f 2, since it is true for X = 2, and for X < 2, log X is at
most 1. Suppose the theorem is true for p < X f 2p (where p is a positive
integer), and consider any 2p < Y f 4p (p ≥ 1). Then log Y = 1 + log(Y/2) < 1 +
Y/2 < Y/2 + Y/2 f Y , where the first inequality follows by the inductive
hypothesis.
B 2X = A. Then
(b) ALet= = 2 . Thus log A = XB. Since X = log A, the theorem
B is
(2 )
proved.
1.8 (a) The sum is 4/3 and follows directly from the formula.
(b) S = 41 +42 2 + 3 + . . .. 4S = 1 + 2 + 3 + Subtracting the first equation from the
43 4 42
second
gives 3S = 14+ 142+ 2 + By part (a), 3S = 4/3 so S = 4/9.
1
(c) S = 4 +42 +4
43
9 + . . .. 4S =4 1 +42 4 +43 9 + 16 + Subtracting the first equation
from the
7 + . . .. Rewriting, i +
second gives 3S =41 +423 + 435 1 . Thus 3S =
Σ∞ Σ

we get 3S = 2
i=0 i=0
2(4/9) + 4/3 = 20/9. Thus S =
20/27.
= iN . Follow the same method as in parts (a)–(c) to obtain a
(d) Let Σ

in terms
SN formula
4
for S
of S i=0
N —1, SN—2, . . . , S0 and solve the recurrence. Solving the recurrence is very difficult.
Σ 1 Σ 1 LN/2 1
1.9 = —1] ≈ ln N — ln N/2 ≈ ln 2.




1

, 2 Chapter 1 Introduction


1.10 24 = 16 ≡ 1 (mod 5). (24)25 ≡ 125 (mod 5). Thus 2100 ≡ 1 (mod 5).
1.11 (a) Proof is by induction. The statement is clearly true for N = 1 and N = 2.
Assume true for
N = 1, 2, . . . , k. 1Σ Fi = Fi + Fk+1. By the induction hypothesis, the value
k+

Then Σ of the sum
on the right —2
i=1
i=
1 — 2, where the latter equality follows from the
is F definition of
the Fibonacci numbers. This proves the claim for N = k + 1, and hence for all N .
2
(b) As in the text, the proof is by induction. Observe that φ + 1 = φ . This implies
—1 —2
that φ + φ =
1. For N = 1 and N = 2, the statement is true. Assume the claim is true for N = 1,
2, . . . , k.
Fk+1 = Fk + Fk—1
by the definition and we can use the inductive hypothesis on the right-hand side,
obtaining
Fk+1 < φk + φk—1
< φ—1φk+1 + φ—2φk+1
Fk+1 < (φ—1 + φ—2)φk+1 < φk+1
and proving the theorem.
(c) See any of the advanced math references at the end of the chapter. The
derivation involves the use of generating functions.
N N N
Σ Σ Σ
1.12 (a (2i — 1) = 2 i — 1 = N(N + 1) — N = N 2.
)
(b) The easiest way to prove this is by induction. The case N = 1 is trivial.
Otherwise,
N +1 N
Σ 3 3 Σ
i = (N + 1) + i3
i=1 i=1

3 N 2(N +
= (N + 1)
+ 1)2 4
2
N2
= (N + 1) + (N + 1)
4
N 2 + 4N + 4
= (N + 1)2 4

(N + 1)2(N +
2)2 22
2
(N + 1)(N + 2)
2


1.15 class EmployeeLastNameCompare
$17.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Solutions The Australian
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
31
Miembro desde
2 año
Número de seguidores
11
Documentos
729
Última venta
3 semanas hace
ExamPro Solutions

Welcome to ExamPro Solutions! Your trusted source for accurate, updated, and verified study guides, test banks, solution manuals, and solved exams. Our materials are carefully curated to help students understand key concepts, prepare for exams with confidence, and achieve top grades.

5.0

4 reseñas

5
4
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes