100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Linear Algebra – Complete Solutions Manual by Jim Hefferon (Exercises & Step-by-Step Answers)

Puntuación
-
Vendido
-
Páginas
411
Grado
A+
Subido en
08-12-2025
Escrito en
2025/2026

This document contains the full set of worked solutions accompanying Jim Hefferon’s Linear Algebra textbook. It covers all chapters, including linear systems, vector spaces, linear transformations, determinants, similarity, eigenvalues, and the Jordan form. Each exercise is solved with clear intermediate steps, row-reductions, explanations, and reasoning. The material is comprehensive and designed to support exam preparation, homework verification, and deeper conceptual understanding.

Mostrar más Leer menos
Institución
Linear Algebra
Grado
Linear Algebra

Vista previa del contenido

Answers to Exercises


Linear Algebra
Jim Hefferon




¡1¢
3


¡2¢
1




1 2
¯3 1¯
¡1¢
x1 ·
3




¡2¢
1




¯x · 1 2¯
¯x · 3 1¯




¯6 2¯
¯8 1¯

,Contents
Chapter One: Linear Systems 4
Subsection One.I.1: Gauss’ Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Subsection One.I.2: Describing the Solution Set ............................................................................. 10
Subsection One.I.3: General = Particular + Homogeneous ......................................................... 14
Subsection One.II.1: Vectors in Space.............................................................................................. 17
Subsection One.II.2: Length and Angle Measures .......................................................................... 20
Subsection One.III.1: Gauss-Jordan Reduction ............................................................................... 25
Subsection One.III.2: Row Equivalence ........................................................................................... 27
Topic: Computer Algebra Systems ................................................................................................... 31
Topic: Input-Output Analysis ........................................................................................................... 33
Topic: Accuracy of Computations ..................................................................................................... 33
Topic: Analyzing Networks ............................................................................................................... 34

Chapter Two: Vector Spaces 36
Subsection Two.I.1: Definition and Examples ................................................................................. 37
Subsection Two.I.2: Subspaces and Spanning Sets ......................................................................... 40
Subsection Two.II.1: Definition and Examples................................................................................ 46
Subsection Two.III.1: Basis ............................................................................................................... 53
Subsection Two.III.2: Dimension ...................................................................................................... 58
Subsection Two.III.3: Vector Spaces and Linear Systems ............................................................. 61
Subsection Two.III.4: Combining Subspaces................................................................................... 66
Topic: Fields ........................................................................................................................................ 69
Topic: Crystals..................................................................................................................................... 70
Topic: Dimensional Analysis .............................................................................................................. 71

Chapter Three: Maps Between Spaces 73
Subsection Three.I.1: Definition and Examples............................................................................... 75
Subsection Three.I.2: Dimension Characterizes Isomorphism ...................................................... 83
Subsection Three.II.1: Definition ...................................................................................................... 85
Subsection Three.II.2: Rangespace and Nullspace .......................................................................... 90
Subsection Three.III.1: Representing Linear Maps with Matrices ................................................ 95
Subsection Three.III.2: Any Matrix Represents a Linear Map.................................................... 103
Subsection Three.IV.1: Sums and Scalar Products ....................................................................... 107
Subsection Three.IV.2: Matrix Multiplication ............................................................................... 108
Subsection Three.IV.3: Mechanics of Matrix Multiplication ........................................................ 112
Subsection Three.IV.4: Inverses ..................................................................................................... 116
Subsection Three.V.1: Changing Representations of Vectors ...................................................... 121
Subsection Three.V.2: Changing Map Representations ............................................................... 124
Subsection Three.VI.1: Orthogonal Projection Into a Line ......................................................... 128
Subsection Three.VI.2: Gram-Schmidt Orthogonalization ........................................................... 131
Subsection Three.VI.3: Projection Into a Subspace ..................................................................... 137
Topic: Line of Best Fit...................................................................................................................... 143
Topic: Geometry of Linear Maps .................................................................................................... 147
Topic: Markov Chains....................................................................................................................... 150
Topic: Orthonormal Matrices .......................................................................................................... 157

Chapter Four: Determinants 158
Subsection Four.I.1: Exploration ..................................................................................................... 159
Subsection Four.I.2: Properties of Determinants .......................................................................... 161
Subsection Four.I.3: The Permutation Expansion ........................................................................ 164
Subsection Four.I.4: Determinants Exist ........................................................................................ 166
Subsection Four.II.1: Determinants as Size Functions ................................................................. 168
Subsection Four.III.1: Laplace’s Expansion ................................................................................... 171

, Topic: Cramer’s Rule........................................................................................................................ 174
4 Linear Algebra, by Hefferon
Topic: Speed of Calculating Determinants .................................................................................... 175
Topic: Projective Geometry ............................................................................................................. 176

Chapter Five: Similarity 178
Subsection Five.II.1: Definition and Examples .............................................................................. 179
Subsection Five.II.2: Diagonalizability............................................................................................ 182
Subsection Five.II.3: Eigenvalues and Eigenvectors ..................................................................... 186
Subsection Five.III.1: Self-Composition ......................................................................................... 190
Subsection Five.III.2: Strings .......................................................................................................... 192
Subsection Five.IV.1: Polynomials of Maps and Matrices ........................................................... 196
Subsection Five.IV.2: Jordan Canonical Form .............................................................................. 203
Topic: Method of Powers ................................................................................................................ 210
Topic: Stable Populations ................................................................................................................ 210
Topic: Linear Recurrences ............................................................................................................... 210

, Chapter One: Linear Systems


Subsection One.I.1: Gauss’ Method

One.I.1.16 Gauss’ method can be performed in different ways, so these simply exhibit one possible
way to get the answer.
(a) Gauss’ method
−(1/2)ρ1+ρ2 2x + 3y = 7
—→
— (5/2)y = —15/2
gives that the solution is y = 3 and x = 2.
(b) Gauss’ method here
x — z=0 x — z=0
−3ρ1+ρ2 −ρ2+ρ3
—→ y + 3z = 1 —→ y + 3z = 1
ρ1+ρ3
y =4 —3z = 3
gives x = —1, y = 4, and z = —1.
One.I.1.17 (a) Gaussian reduction
−(1/2)ρ1+ρ2 2x + 2y = 5
—→
—5y = —5/2
shows that y = 1/2 and x = 2 is the unique solution.
(b) Gauss’ method
ρ1+ρ2 —x + y = 1
—→
2y = 3
gives y = 3/2 and x = 1/2 as the only solution.
(c) Row reduction
−ρ1+ρ2 x — 3y + z = 1
—→
4y + z = 13
shows, because the variable z is not a leading variable in any row, that there are many solutions.
(d) Row reduction
−3ρ1+ρ2 —x — y = 1
—→
0 = —1
shows that there is no solution.
(e) Gauss’ method
x + y — z = 10 x+ y — z = 10 x+ y— z = 10
ρ1↔ρ4 2x — 2y + z = 0 −2ρ1+ρ2 —4y + 3z = —20 −(1/4)ρ2+ρ3 —4y + 3z = —20
—→ —→ —→
x +z= 5 −ρ1+ρ3 —y + 2z = —5 ρ2+ρ4 (5/4)z = 0
4y + z = 20 4y + z = 20 4z = 0
gives the unique solution (x, y, z) = (5, 5, 0).
(f) Here Gauss’ method gives
2x + z+ w= 5 2x + z+ w= 5
−(3/2)ρ1+ρ3 y — w= —1 −ρ2+ρ4 y — w= —1
—→ —→
−2ρ 1 +ρ 4 — (5/2)z — (5/2)w = —15/2 — (5/2)z — (5 /2)w = —15 /2
y — w= —1 0= 0
which shows that there are many solutions.
One.I.1.18 (a) From x = 1 — 3y we get that 2(1 — 3y) + y = —3, giving y = 1.
(b) From x = 1 — 3y we get that 2(1 — 3y) + 2y = 0, leading to the conclusion that y = 1/2.
Users of this method must check any potential solutions by substituting back into all the equations.

Escuela, estudio y materia

Institución
Linear Algebra
Grado
Linear Algebra

Información del documento

Subido en
8 de diciembre de 2025
Número de páginas
411
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

$26.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
NurseCelestine Chamberlain College Of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
120
Miembro desde
1 año
Número de seguidores
25
Documentos
5418
Última venta
1 día hace
Nurse Celestine Study Hub

Welcome! I’m Nurse Celestine, your go-to source for nursing test banks, solution manuals, and exam prep materials. My uploads cover trusted textbooks from top nursing programs — perfect for NCLEX prep, pharmacology, anatomy, and clinical courses. Study smarter, not harder!

4.4

312 reseñas

5
203
4
40
3
57
2
5
1
7

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes