100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Differential Equations

Puntuación
-
Vendido
-
Páginas
66
Grado
A+
Subido en
13-02-2021
Escrito en
2019/2020

Differential Equations Coursework. As usual I have obtained a first in this coursework. I have provided the questions and my answers. Feedback is also provided. 98/100.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
13 de febrero de 2021
Número de páginas
66
Escrito en
2019/2020
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Stuvia.co.uk - The Marketplace for Revision Notes & Study Guides




1. An equation used to model (self-limiting) population growth (such as the growth of tumours)
is  
dP K
= rP ln ,
dt P
where P (t) > 0 is the population at time t ≥ 0, and r and K are positive constants.

(a) Find all equilibrium solutions of this differential equation and classify each as stable,
unstable, or semi-stable.
(5 marks)

(b) Generate a direction field for the case r = 0.5 and K = 500 for 0 ≤ t ≤ 50 and
1 ≤ P ≤ 700. Clearly state how your direction field confirms your statements in part
(a) about the value and stability of each equilibrium solution.
(5 marks)

(c) Solve this differential equation along with intial condition P (0) = P0 , giving P as an
explicit function of t in your final answer.
(15 marks)


[25 MARKS TOTAL]




4




Downloaded by: tskl |
Distribution of this document is illegal

, Stuvia.co.uk - The Marketplace for Revision Notes & Study Guides




2. (a) Solve the following differential equation:

dy 4x − 2xy 3 sin(x2 y 3 )
=
dx 3x2 y 2 sin(x2 y 3 )

Hint: you do not have to write y as an explicit function of x in your final answer.
(12 marks)

(b) For the initial value problem

dy
= −y 2 (y − 2)2 (y + 3), y(0) = y0 (where y0 ∈ R),
dt
determine the value of all equilibrium points and state, with reason, whether each equi-
librium point is stable, unstable, or semistable.
(13 marks)

[25 MARKS TOTAL]




5




Downloaded by: tskl |
Distribution of this document is illegal

, Stuvia.co.uk - The Marketplace for Revision Notes & Study Guides




3. A small tank with a capacity of 1000 litres originally contains 200 litres of water with 100
kilograms of salt in solution. Water containing 1 kilogram of salt per litre starts entering the
tank at a rate of 3 litres per minute and the mixture is at the same time allowed to flow out of
the tank at a rate of 2 litres per minute.

(a) Give a formula for the amount of solution in the tank at time t minutes after the inflow
and outflow begin, and calculate at what time the solution would begin to overflow the
tank.
(4 marks)

(b) If Q(t) is the amount of salt in the tank (in kilograms) at time t minutes after the inflow
and outflow begin, set up an initial value problem whose solution would allow us to know
Q(t) at any time, t, prior to the time when the solution begins to overflow the tank. Solve
this initial value problem for Q(t).
(14 marks)

(c) What is the amount of salt (in kilograms) AND the concentration (in kilograms per litre)
of salt in the tank when the solution first begins to overflow the tank? (4 marks)

(d) What is the theoretical limiting concentration of salt in the tank if the tank had infinite
capacity? Explain your answer.
(3 marks)


[25 MARKS TOTAL]




6




Downloaded by: tskl |
Distribution of this document is illegal

, Stuvia.co.uk - The Marketplace for Revision Notes & Study Guides




4. (a) Solve the Initial Value Problem

d2 x
+ 6x = 12, x(0) = 1, x0 (0) = 14
dt2

(12 marks)

(b) One of the (many) types of differential equations we have not considered in class is the
unfortunately named (due to potential confusion with the homogeneous linear differential
equations which are 0 on one side of the equation) homogeneous first order differential
equation which, is a differential equation which can be written in the form
dy y
=f .
dx x
Research this type of homogeneous differential equation and use the knowledge you gain
to solve the following homogeneous differential equation (your final answer should be an
equation giving y implicitly as a function of x):

dy 3y 2 − x2
=
dx 2xy

(13 marks)

[25 MARKS TOTAL]




7




Downloaded by: tskl |
Distribution of this document is illegal
$111.17
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
tskl

Conoce al vendedor

Seller avatar
tskl University of Greenwich (London)
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
4 año
Número de seguidores
0
Documentos
0
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes