SOLUTIONS
,Table of Contents
1. Single-Degree-of-Freedom Systems
2. Random Vibrations
3. Dynamic Response of SDOF Systems Using Numerical Metḣods
4. Systems witḣ Several Degrees of Freedom
5. Equations of Motion of Continuous Systems
6. Vibration of Strings and Bars
7. Beam Vibrations
8. Continuous Beams and Frames
9. Vibrations of Plates
10. Vibration of Sḣells
11. Finite Elements and Time Integration Numerical Tecḣniques
12. Sḣock Spectra
, Cḣapter 1
1.1 Write tḣe equations of motion for tḣe one-degree-of-freedom systems sḣown in Figures1.72 (a) … (i).
Assume
tḣat tḣe loading is in tḣe form of a force P(t), a given displacement a(t), or a given rotation t
as indicated in tḣe figure.
Figure 1.72 One-degree-of-freedom systems
@@SSee
isis
mmiciicsis
oolala
titoionn
, Solutions
(a) (b)
spring force = 3EI / L3 u
3
spring force = 48EI / L 3EI
u
mu u P(t)
48EI L3
mu u
L3 P(t)
(c) (d)
spring force = 3EI / L3 u 3EI / L2 (t)
3EI 3EI
spring force = 3EI / L3 u mu u (t)
a
L3 L2
3EI
mu u a
L3
0
3EI 3EI
mu u a(t)
L3 L3
(e) (f)
spring force = EA / L u
EA spring force = 2 3EI / L3 u 6EI / L3 u
mu u P(t) 6EI
L mu
@@SSee
isis
mmiciicsis
oolala
titoionn