100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Foundations of Mathematical Economics by Michael Carter | Complete Solutions Manual

Puntuación
-
Vendido
-
Páginas
466
Grado
A+
Subido en
27-11-2025
Escrito en
2025/2026

This document provides the complete Solutions Manual for Foundations of Mathematical Economics by Michael Carter. It includes detailed, step-by-step solutions to all textbook exercises, covering core mathematical methods used in economic theory. Topics include optimization, comparative statics, dynamic analysis, linear algebra applications, and formal modeling techniques. This comprehensive manual is ideal for students seeking deeper understanding and instructors requiring fully worked solutions.

Mostrar más Leer menos
Institución
Foundations Of Mathematical Economics
Grado
Foundations of Mathematical Economics











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Foundations of Mathematical Economics
Grado
Foundations of Mathematical Economics

Información del documento

Subido en
27 de noviembre de 2025
Número de páginas
466
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Solutions Manual#z



Foundations of Mathematical
#z #z #z



Economics
#z




Michael #zCarter

#z November #z15, #z2002

, c⃝ 2001 Michael Carter
Solutions for Foundations of Mathematical Economics All rights reserved




Chapter 1: Sets and Spaces

1.1
{ 1, 3, 5, 7 . . . } or { 𝑛 ∈ 𝑁 : 𝑛 is odd }
1.2 Every 𝑥 ∈ 𝐴 also belongs to 𝐵. Every 𝑥 ∈ 𝐵 also belongs to 𝐴. Hence 𝐴, 𝐵 have
precisely the same elements.
1.3 Examples of finite sets are
∙ the letters of the alphabet { A, B, C, . . . , Z }
∙ the set of consumers in an economy
∙ the set of goods in an economy
∙ the set of players in a game.
Examples of infinite sets are
∙ the real numbers ℜ
∙ the natural numbers 𝔑
∙ the set of all possible colors
∙ the set of possible prices of copper on the world market
∙ the set of possible temperatures of liquid water.
1.4 𝑆 = { 1, 2, 3, 4, 5, 6 }, 𝐸 = { 2, 4, 6 }.
1.5 The player set is 𝑁 = { Jenny, Chris } . Their action spaces are
𝐴𝑖 = { Rock, Scissors, Paper } 𝑖 = Jenny, Chris
1.6 The set of players is 𝑁 = {1, 2 , . . . , 𝑛 .} The strategy space of each player is the set
of feasible outputs
𝐴𝑖 = { 𝑞𝑖 ∈ ℜ+ : 𝑞𝑖 ≤ 𝑄𝑖 }
where 𝑞𝑖 is the output of dam 𝑖.
1.7 The player set is 𝑁 = {1, 2, 3}. There are 23 = 8 coalitions, namely
𝒫(𝑁) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
10
There are 2 coalitions in a ten player game.
1.8 Assume that 𝑥 ∈ (𝑆 ∪ 𝑇 )𝑖. That is 𝑥 ∈ / 𝑆 ∪ 𝑇 . This implies 𝑥 ∈/ 𝑆 and 𝑥 ∈ / 𝑇,
or 𝑥 ∈ 𝑆𝑖 and 𝑥 ∈ 𝑇 𝑖. Consequently, 𝑥 ∈ 𝑆𝑖 ∩ 𝑇 𝑖. Conversely, assume 𝑥 ∈ 𝑆𝑖 ∩ 𝑇 𝑖.
This implies that 𝑥 ∈ 𝑆𝑖 and 𝑥 ∈ 𝑇 𝑖. Consequently 𝑥 ∈ / 𝑆 and 𝑥 ∈ / 𝑇 and therefore
𝑥∈/ 𝑆 ∪ 𝑇 . This implies that 𝑥 ∈ (𝑆 ∪ 𝑇 ) 𝑖 . The other identity is proved similarly.
1.9

𝑆=𝑁
𝑖∈𝒞

𝑆=∅
𝑖∈𝒞



1

, c⃝ # z 2001 #zMichael

Solutions #z for #zFoundations # z of # z Mathematical #z Carter
All # z rights
# z Economics # z reserved



𝑥2
1




𝑥1
-1 0 1




-1

Figure #z1.1: #zThe #zrelation #z{ #z(𝑥, #z𝑦) #z: #z𝑥2 #z+ #z𝑦2 #z= #z1 #z}


1.10 The #zsample #zspace #zof #za #zsingle #zcoin #ztoss{ #zis #}z 𝐻, #z𝑇 # z . # z The #zset #zof
#zpossible #zoutcomes #zin # z three #ztosses #zis #zthe #zproduct

{
{𝐻, #z𝑇#z} × #z{𝐻, #z𝑇#z} × #z{𝐻, #z𝑇#z} #z= # z (𝐻, #z𝐻, #z𝐻), #z(𝐻, #z𝐻, #z𝑇#z), #z(𝐻, #z𝑇, #z𝐻),
}
(𝐻, #z𝑇, #z𝑇 #z), #z(𝑇, #z𝐻, #z𝐻), #z(𝑇, #z𝐻, #z𝑇 #z), #z(𝑇, #z𝑇, #z𝐻), #z(𝑇, #z𝑇, #z𝑇 #z)


A # z typical # z outcome # z is # z the # z sequence # z (𝐻, #z𝐻, #z𝑇 #z) # z of # z two # z heads # z followed # z by # z a # z tail.
1.11

𝑌 #z ∩ #zℜ+𝑖 # z = #z{0}

where # z 0 # z = # z (0, #z0,.. . #z, #z0) # z is # z the # z production # z plan # z using # z no # z inputs # z and
# z producing # z no # z outputs. #zTo #z see # z this, # z first # z note # z that # z 0 # z is # z a # z feasible

# z production # z plan. # z Therefore, #z 0 # z ∈ # z 𝑌 #z. # z Also,

0 #z ∈ #z+ ℜ𝑖 # z and # z therefore # z 0 #z ∈+#z 𝑌 # z ∩ #zℜ𝑖 #z.
𝑖
To #zshow #zthat #zthere #zis #zno #zother #zfeasible #zproduction #zℜplan + #zin # z #z, #zwe #zassume
∈ #zℜ
#zthe #zcontrary. #zThat # z is, # z we # z assume # z there # z is # z some # z feasible
+ ##zz production # z plan
#zy # z # z # z
𝑖
# z # z 0 # z . # z This # z implies #zthe #zexistence #z z ∖#z
# of { #z#plan
#za z } #zproducing #za

#zpositive #zoutput #zwith #zno #zinputs. #zThis #ztechnological #zinfeasible, # z so # z that #z𝑦 # z ∈ /
# z 𝑌 #z.


1.12 1. # z Let # z x #z ∈ # z 𝑉 #z(𝑦). # z This # z implies # z that # z (𝑦, #z−x) #z ∈ #z 𝑌 #z. # z Let # z x′ # z ≥ #z x. # z Then # z (𝑦, #z−x′) #z ≤
(𝑦, #z−x) #zand #z free #z disposability #z implies # z that #z (𝑦, #z−x′) #z∈ #z𝑌 #z. #zTherefore #z x′ #z ∈ #z𝑉 #z(𝑦).
2. # z Again # z assume # z x # z ∈ # z 𝑉 #z(𝑦). # z This # z implies # z that # z (𝑦, #z−x) # z ∈
# z 𝑌 #z. # z By # z free # z disposal, #z(𝑦′, #z−x) #z∈ #z𝑌 # z for #zevery #z𝑦′ # z ≤ #z𝑦, #zwhich
# z implies # z that #zx #z∈ #z𝑉 #z(𝑦′). # z 𝑉 #z(𝑦′) #z⊇ #z𝑉 #z(𝑦).


1.13 The #z domain # z of # z “<” # z is # z {1, #z2} #z= #z𝑋 # z and # z the # z range # z is # z {2, #z3} #z⫋ #z𝑌 #z.
1.14 Figure # z 1.1.
1.15 The # z relation #z“is # z strictly #zhigher #zthan” # z is #ztransitive, # z antisymmetric #zand
# z asymmetric. #zIt #zis #znot #zcomplete, #zreflexive #zor #zsymmetric.




2

, c⃝ # z 2001 #zMichael

Solutions #z for #zFoundations # z of # z Mathematical #z Carter
All # z rights
# z Economics # z reserved


1.16 The # z following # z table # z lists # z their # z respective # z properties.
< ≤
√ =

reflexive ×
transitive √ √ √
√ √
symmetric ×
√ × ×
asymmetric √ √ √
anti-symmetric
√ √
complete ×
Note # z that # z the # z properties #z of # z symmetry # z and # z anti-symmetry # z are # z not # z mutually # z exclusive.
1.17 Let ~ # z be #zan #zequivalence #zrelation #zof #za∕ #zset ∅ #z𝑋 #z= # z . #zThat #zis, #z∼the #zrelation
# z is #zreflexive, #zsymmetric #zand #ztransitive. #zWe #zfirst ∈ #zshow #zthat #zevery #z𝑥 # z 𝑋
#zbelongs #zto #zsome #zequivalence #zclass. # ~ z Let # z 𝑎 # z be # z any # z element # z in # z 𝑋 # z and

# z let # z # z (𝑎) # z be # z the # z class # z of # z elements # z equivalent # z to

𝑎, #zthat #zis
∼(𝑎) #z≡ #z { #z𝑥 #z∈ #z 𝑋 # z : #z 𝑥 #z ∼ #z 𝑎 #z}
Since ∼ is #zreflexive, #z𝑎∼ 𝑎 #zand #zso #z∈𝑎 # z ∼
(𝑎). # z Every #z𝑎∈ 𝑋 #z belongs #zto #zsome
#zequivalence #zclass #zand #ztherefore

𝑋 #z = ∼(𝑎)
𝑖∈𝑖

Next, # z we # z show # z that # z the equivalence # z classes
# z # z are # z either # z disjoint # z or
identical, # z that # z is
# z

∼(𝑎) #z∕= #z∼(𝑏) # z if # z and # z only # z if # z f∼(𝑎) #z∩ #z∼(𝑏) #z= #z∅.
First, #zassume #z∼(𝑎) #z∩ #z∼(𝑏) #z= #z∅ . #zThen #z 𝑎 #z∈ #z∼(𝑎) #z but #z 𝑎 #z∈
/ # z ∼(𝑏). #zTherefore #z∼(𝑎) #z∕= #z∼(𝑏).
Conversely, #zassume #z∼(𝑎) #z∩ #z∼(𝑏) #z∕= #z∅ #zand #zlet #z𝑥 #z∈ #z∼(𝑎) #z∩ #z∼(𝑏). # z Then #z𝑥 #z∼
#z𝑎 #zand #zby #zsymmetry # z 𝑎 # z ∼ # z 𝑥. # z Also # z 𝑥 # z ∼ # z 𝑏 # z and # z so # z by

# z transitivity # z 𝑎 # z ∼ # z 𝑏. # z Let # z 𝑦 # z be # z any # z element #zin # z ∼(𝑎) # z so # z that # z 𝑦

# z ∼ # z 𝑎. # z Again # z by # z transitivity # z 𝑦 # z ∼ # z 𝑏 # z and # z therefore # z 𝑦 # z ∈ # z ∼(𝑏).

# z Hence

∼(𝑎) #z⊆ #z∼(𝑏). #zSimilar #zreasoning #zimplies #zthat #z∼(𝑏) #z⊆ #z∼(𝑎). #zTherefore
#z∼(𝑎) #z= #z∼(𝑏). #zWe #zconclude #zthat #zthe #zequivalence #zclasses #zpartition #z𝑋.
1.18 The #zset #zof #zproper #zcoalitions #zis #znot #za #zpartition #zof #zthe #zset #zof #zplayers, #zsince
#zany #zplayer #zcan #zbelong #zto #zmore #zthan #zone #zcoalition. #zFor #zexample, #zplayer #z1

#zbelongs #zto #zthe #zcoalitions

{1}, #z {1, #z2} # z and # z so # z on.
1.19

𝑥 #z≻ #z𝑦 # z =⇒ # z 𝑥 #z≿ #z𝑦 # z and #z 𝑦 #z ∕≿ #z𝑥
𝑦 # z ∼ #z 𝑧 # z =⇒ # z 𝑦 # z ≿ #z𝑧 # z and # z 𝑧 # z ≿ #z𝑦
Transitivity #zof #z≿ #zimplies # z 𝑥 #z≿ #z𝑧 . #zWe # z need # z to # z show #zthat #z𝑧 # z ∕≿ #z𝑥 . #zAssume
# z otherwise, #zthat #zis # z assume # z 𝑧 # z ≿ #z 𝑥 # z This # z implies # z 𝑧 # z ∼ # z 𝑥 # z and # z by
# z transitivity # z 𝑦 # z ∼ # z 𝑥. # z But # z this # z implies # z that

𝑦 #z≿ #z𝑥 #z which #zcontradicts #zthe #zassumption #zthat #z𝑥 #z≻ #z𝑦 . #zTherefore #zwe #zconclude #zthat #z𝑧 #z∕≿ #z𝑥
and # z therefore # z 𝑥 #z ≻ #z𝑧 . #zThe # z other # z result # z is # z proved # z in # z similar # z fashion.
1.20 asymmetric # z Assume # z 𝑥 # z ≻ # z 𝑦.


while Therefore
3
$16.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
StuviaSavvy West Virgina University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
26
Miembro desde
7 meses
Número de seguidores
0
Documentos
441
Última venta
5 días hace
STUVIASAVVY TESTBANKS AND EXAM PRACTICES.

Looking for relevant and up-to-date study materials to help you ace your exams? StuviaSavvy has got you covered! We offer a wide range of study resources, including test banks, exams, study notes, and more, to help prepare for your exams and achieve your academic goals. What's more, we can also help with your academic assignments, research, dissertations, online exams, online tutoring and much more! Please send us a message and will respond in the shortest time possible. Always Remember: Don't stress. Do your best. Forget the rest! Gracias!

Lee mas Leer menos
4.0

7 reseñas

5
4
4
0
3
2
2
1
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes