100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Instructor’s Manual — Statistical Mechanics, 3rd Edition — R. K. Pathria & Paul D. Beale — ISBN Verified — Latest Update 2025/2026 — (All Chapters Covered)

Puntuación
-
Vendido
-
Páginas
166
Grado
A+
Subido en
26-11-2025
Escrito en
2025/2026

This comprehensive Instructor’s Manual for Statistical Mechanics (3rd Edition) by R. K. Pathria and Paul D. Beale provides detailed instructional support aligned with the textbook’s rigorous treatment of classical and quantum statistical mechanics. The manual follows the complete, verified chapter structure and supports graduate-level instruction in theoretical physics, physical chemistry, and thermodynamics. It includes problem-solving guidance, conceptual breakdowns, and pedagogical support for all major ensemble theories, quantum statistics, and phase transitions. The covered chapters include: The Statistical Basis of Thermodynamics, Elements of Ensemble Theory, The Canonical Ensemble, The Grand Canonical Ensemble, Formulation of Quantum Statistics, The Theory of Simple Gases, Ideal Bose Systems, Ideal Fermi Systems, Thermodynamics of the Early Universe, Statistical Mechanics of Interacting Systems: The Method of Cluster Expansions, Statistical Mechanics of Interacting Systems: The Method of Quantized Fields, Phase Transitions: Criticality, Universality, and Scaling, Phase Transitions: Exact (or Almost Exact) Results for Various Models, Phase Transitions: The Renormalization Group Approach, Fluctuations and Nonequilibrium Statistical Mechanics, and Computer Simulations.

Mostrar más Leer menos
Institución
Statistical Mechanics 3rd Edition By Paul D. Beale
Grado
Statistical Mechanics 3rd Edition by Paul D. Beale











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Statistical Mechanics 3rd Edition by Paul D. Beale
Grado
Statistical Mechanics 3rd Edition by Paul D. Beale

Información del documento

Subido en
26 de noviembre de 2025
Número de páginas
166
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Statistical Mechanics 3rd Edition


INSTRUCTOR’S
ST
UV

MANUAL
IA
_A

R. K. Pathria
PP

Paul D. Beale
RO

Comprehensive Instructor’s Manual for
VE

Instructors and Students
© R. K. Pathria & Paul D. Beale. All rights reserved. Reproduction or distribution without
D?

permission is prohibited.




©MedConnoisseur

, TABLE OF CONTENTS

Instructor’s Manual – Statistical Mechanics, 3rd Edition
R. K. Pathria, Paul D. Beale
ST

Chapter 1. Elements of Ensemble Theory,
Chapter 2. The Canonical Ensemble,
Chapter 3. The Grand Canonical Ensemble,
UV

Chapter 4. Formulation of Quantum Statistics,
Chapter 5. The Theory of Simple Gases,
Chapter 6. Ideal Bose Systems,
Chapter 7. Ideal Fermi Systems,
IA

Chapter 8. Thermodynamics of the Early Universe,
Chapter 9. Statistical Mechanics of Interacting Systems: The Method of Cluster
Expansions,
_A

Chapter 10. Statistical Mechanics of Interacting Systems: The Method of
Quantized Fields,
Chapter 11. Phase Transitions: Criticality, Universality, and Scaling,
Chapter 12. Phase Transitions: Exact (or Almost Exact) Results for Various
PP

Models,
Chapter 13. Phase Transitions: The Renormalization Group Approach,
Chapter 14. Fluctuations and Nonequilibrium Statistical Mechanics,
RO
Chapter 15. Computer Simulations
VE
D?


©MedConnoisseur

,ST

Chapter 1
UV

1.1. (a) We expand the quantity ln Ω(0) (E1 ) as a Taylor series in the variable
IA
(E1 − Ē1 ) and get

ln Ω(0) (E1 ) ≡ lnΩ1 (E1 ) + ln Ω2 (E2 ) (E2 = E (0) − E1 )
= {ln Ω1 (Ē1 ) + ln Ω2 (Ē2 )}+
_A
 
∂ ln Ω1 (E1 ) ∂ ln Ω2 (E2 ) ∂E2
+ (E1 − Ē1 )+
∂E1 ∂E2 ∂E1 E1 =Ē1
( 2 )
1 ∂ 2 ln Ω1 (E1 ) ∂ 2 ln Ω2 (E2 ) ∂E2

+ (E1 − Ē1 )2 + · · · .
2 ∂E12 ∂E22 ∂E1
E1 =Ē1
PP
The first term of this expansion is a constant, the second term van-
ishes as a result of equilibrium (β1 = β2 ), while the third term may
be written as
   
1 ∂β1 ∂B2 2 1 1 1
+ E1 − Ē1 = − + (E1 −Ē1 )2 ,
2 ∂E1 ∂E2 eq. 2 kT12 (Cv )1 kT22 (Cv )2
RO
with T1 = T2 . Ignoring the subsequent terms (which is justified if the
systems involved are large) and taking the exponentials, we readily
see that the function Ω0 (E1 ) is a Gaussian in the variable (E1 − Ē1 ),
with variance kT 2 (Cv )1 (Cv )2 /{(Cv )1 + (Cv )2 }. Note that if (Cv )2 ≫
(Cv )1 — corresponding to system 1 being in thermal contact with a
very large reservoir — then the variance becomes simply kT 2 (Cv )1 ,
VE
regardless of the nature of the reservoir; cf. eqn. (3.6.3).
(b) If the systems involved are ideal classical gases, then (Cv )1 = 23 N1 k
and (Cv )2 = 23 N2 k; the variance then becomes 23 k 2 T 2 · N1 N2 /(N1 +
N2 ). Again, if N2 ≫ N1 , we obtain the simplified expression 23 N1 k 2 T 2 ;
cf. Problem 3.18.
D?
1.2. Since S is additive and Ω multiplicative, the function f (Ω) must satisfy
the condition
f (Ω1 Ω2 ) = f (Ω1 ) + f (Ω2 ). (1)


1

, 2

Differentiating (1) with respect to Ω1 (and with respect to Ω2 ), we get
ST
Ω2 f ′ (Ω1 Ω2 ) = f ′ (Ω1 ) and Ω1 f ′ (Ω1 Ω2 ) = f ′ (Ω2 ),

so that
Ω1 f ′ (Ω1 ) = Ω2 f ′ (Ω2 ). (2)
Since the left-hand side of (2) is independent of Ω2 and the right-hand side
UV
is independent of Ω1 , each side must be equal to a constant, k, independent
of both Ω1 and Ω2 . It follows that f ′ (Ω) = k/Ω and hence

f (Ω) = k ln Ω + const. (3)

Substituting (3) into (1), we find that the constant of integration is zero.
IA
1.4. Instead of eqn. (1.4.1), we now have

Ω ∝ V (V − v0 )(V − 2v0 ) . . . (V − N − 1v0 ),

so that
_A
ln Ω = C + ln V + ln (V − v0 ) + ln (V − 2v0 ) + . . . + ln (V − N − 1v0 ),

where C is independent of V . The expression on the right may be written
as
N −1 N −1 
N 2 v0
PP
  
X jv0 X jv0
C+N ln V + ln 1 − ≃ C+N ln V + − ≃ C+N ln V − .
j=1
V j=1
V 2V

Equation (1.4.2) is then replaced by

N 2 v0
 
P N N N v0
RO
= + = 1 + , i.e.
kT V 2V 2 V 2V
 −1
N v0
PV 1 + = NkT .
2V

Since N v0 ≪ V, (1 + N v0 /2V )−1 ≃ 1 − N v0 /2V . Our last result then
takes the form: P (V − b) = NkT , where b = 21 N v0 .
VE
A little reflection shows that v0 = (4π/3)σ 3 , with the result that
 3
1 4π 3 4π 1
b= N· σ = 4N · σ .
2 3 3 2

1.5. This problem is essentially solved in Appendix A; all that remains to be
D?
done is to substitute from eqn. (B.12) into (B.11), to get

(πε∗1/2 /L)3 (πε∗1/2 /L)2
Σ1 (ε∗ ) = V ∓ S.
6π 2 16π
$19.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
MedConnoisseur West Virgina University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
2536
Miembro desde
3 año
Número de seguidores
1735
Documentos
2332
Última venta
2 días hace
MedConnoisseur Study Hub – Verified Solutions, Test Banks & Guides for Medical, Nursing, Business, Engineering, Accounting, Chemistry, Biology & Other Subjects

Welcome to Your Ultimate Study Resource Hub! Looking for high-quality, reliable, and exam-ready study materials? You’re in the right place. Our shop specializes in original publisher content, including solutions manuals, test banks, and comprehensive study guides that are ideal for university and college students across various subjects. Every document is in PDF format and available for instant download—no waiting, no hassle. That means you get immediate access to top-tier academic resources the moment you need them, whether you're cramming for an exam or studying ahead. These materials are especially effective for exam preparation, offering step-by-step solutions, real test formats, and well-organized study guides that align with your coursework and textbooks. Whether you're a visual learner, a problem-solver, or need practice questions—there’s something for every study style. Love what you get? Share it! Help your mates and classmates succeed too by referring them to our shop. More learners, more success for all.

Lee mas Leer menos
4.0

194 reseñas

5
102
4
38
3
25
2
9
1
20

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes